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Abstract

We develop a dynamic theory of “Partial Equilibrium Thinking” (PET), which
micro-founds time-varying return extrapolation: extrapolative beliefs are present at
all times, but only sometimes manifest themselves in explosive ways. We formalize
the distinction between normal times shocks and “displacement shocks” (Kindle-
berger 1978), and study their interaction with extrapolative beliefs. In normal times,
PET generates constant extrapolation and momentum. Following a displacement
shock that increases uncertainty, PET leads to stronger and time-varying extrapo-
lation, triggering bubbles and endogenous crashes. Our theory sheds light on both
normal times market dynamics and Kindleberger’s narrative of bubbles within a
unified framework.
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Sustained periods of over-optimism that end in a crash are at the heart of many
macroeconomic events, such as stock market and house price bubbles, investment booms,
and credit cycles.! Given the real consequences of such events, there has been widespread
interest in understanding their anatomy and the beliefs that support them.

In terms of anatomy, Kindleberger (1978)’s historical narrative of bubbles identifies
three stages. The first one is characterized by a displacement, such as a technological rev-
olution or a financial innovation. Next, euphoria and acceleration lead to a self-sustaining
feedback between prices and beliefs that decouples prices from fundamentals. Finally,
agents who rode the bubble exit, leading to a crash. Turning to beliefs, empirical evidence
points towards extrapolative expectations, and recent models of extrapolative beliefs have
indeed been successful in generating many features of the Kindleberger (1978) narrative.?

At the same time, the reduced form nature of extrapolation considered in these theories
leaves several questions open. First, what are the foundations of extrapolative expecta-
tions, and what determines how strongly traders extrapolate price changes in updating
their future beliefs? Second, why is it that “[b]y no means does every upswing in business
excess lead inevitably to mania and panic” (Kindleberger 1978)? In other words, why is
it that the same type of extrapolative beliefs sometimes leads prices and beliefs to become

extreme and decoupled from fundamentals, while in normal times we don’t observe such

1See Bagehot (1873), Galbraith (1954), Kindleberger (1978), Shiller (2000), Jorda et al. (2015),
Greenwood et al. (2022), among others.

2Recent models of extrapolative beliefs include De Long et al. (1990), Hong and Stein (1999), Green-
wood and Hanson (2015), Adam et al. (2017), Glaeser and Nathanson (2017), Bordalo et al. (2021), Liao
et al. (2021). Earlier theories of bubbles relied on rational expectations (Tirole 1985, DeMarzo et al. 2007,
Péastor and Veronesi 2009), and later on over-confidence and short-sale constraints (Harrison and Kreps
1978, Scheinkman and Xiong 2003). See Brunnermeier and Oehmke (2013), Xiong (2013) and Barberis
(2018) for exhaustive surveys on bubbles and crashes, and Hirshleifer (2015) for a broader survey on
behavioral finance.



extreme responses to shocks?

To answer these questions we make two contributions. First, we build on Bastianello
and Fontanier (2024) to develop a dynamic theory of “Partial Equilibrium Thinking”
(PET), where traders fail to realize the general equilibrium consequences of their actions
when learning information from prices. PET provides a micro-foundation for time-varying
extrapolation, where extrapolative beliefs are present at all times, but only sometimes
manifest themselves in explosive ways. Second, consistent with the Kindleberger narra-
tive, we formalize the distinction between normal times shocks and displacement shocks,
and study how such shocks interact with extrapolative beliefs. We show that while nor-
mal times shocks lead to constant return extrapolation, contrarian trading with respect
to short-term returns and weak departures from rationality, displacement shocks lead to
stronger and time-varying extrapolation, momentum trading, and bubbles and crashes.

To illustrate our notion of partial equilibrium thinking, consider some uninformed
retail investors who see the price of a stock rise, but do not know what caused this. They
may think that other more informed investors received positive news about the stock and
decided to buy, pushing up its price. Given this thought process, our uninformed traders
infer positive news from the price change, and also buy, leading to a further price increase.
At this point, if our uninformed traders were rational they would perfectly understand
that this additional price rise is not due to further good news, but that it simply reflects
the lagged response of uninformed agents who are thinking and behaving just like them.
As a result, they would no longer update their beliefs in response to this second price rise,

and the two-way feedback between prices and beliefs would fail to materialize.



However, for uninformed agents to learn the right information from prices, they must
perfectly understand what generates the price changes they observe at each point in time,
which in turn requires them to perfectly understand all other agents’ actions and beliefs.
Theories of rational expectations achieve this level of understanding by assuming com-
mon knowledge of rationality. We relax this assumption and develop a dynamic theory
of partial equilibrium thinking (Bastianello and Fontanier 2024), whereby “otherwise ra-
tional expectations fail to take into account the strength of similar responses by others”
(Kindleberger 1978).3 Specifically, PET agents neglect that all other uninformed agents
are thinking and behaving just like them, and they instead attribute any price change
they observe to new information alone. Following the second price rise in our earlier
example, PET agents attribute it to further good news, encouraging further buying and
inducing further price rises in a self-sustaining feedback between prices and beliefs. In
this paper we formalize the intuition behind this example and show how, depending on
the information structure, the strength of this feedback effect may be time-varying.

We begin by introducing partial equilibrium thinking into a standard infinite horizon
model of a financial market where each period a continuum of investors solve a portfolio
choice problem between a risky and a riskless asset. Our agents differ in their ability to
observe fundamental news: a fraction of agents are informed and observe fundamental
shocks, and the remaining agents are instead uninformed and learn from past prices.

Given this information structure, price changes reflect both the contemporaneous re-

3We build on a large literature in social learning that has documented how people tend to under-
estimate the extent to which others also learn from aggregate outcomes (Kiibler and Weizsicker 2004,
Penczynski 2017, Eyster et al. 2018, Enke and Zimmermann 2019, Bohren and Hauser 2021), and has
formalized this behavior with models of correlation neglect, naive herding, cursedness, and k-level thinking
(DeMarzo et al. 2003, Eyster and Rabin 2005, Eyster and Rabin 2010).



sponse of informed agents to news, and the lagged response of uninformed agents who
learn from past prices. However, when uninformed agents think in partial equilibrium,
they neglect the second source of price variation and attribute any price change to new
information alone, leading to a simple type of return extrapolation.

We show that the degree of extrapolation and the bias that partial equilibrium thinking
generates are decreasing in informed traders’ informational edge. This edge is defined
as the aggregate confidence of informed traders relative to the aggregate confidence of
uninformed traders, and is higher when there are more informed traders in the market,
and when the precision of the additional information informed traders hold is higher.
When this informational edge is high, informed traders trade more aggressively, and the
influence on prices of uninformed traders’ beliefs is lower. Partial equilibrium thinkers
then neglect a smaller source of price variation, therefore leading to a smaller bias and a
smaller strength of the feedback between prices and beliefs. Conversely, when informed
traders’ edge is low, partial equilibrium thinkers neglect a greater source of price variation,
leading to a larger bias and a stronger feedback effect.

Our second key contribution is to formally model the distinction between normal times
shocks (which do not generate changes in the underlying environment), and displacement
shocks (which instead do). We then show how these shocks interact differently with ex-
trapolative beliefs. While informed traders’ edge is high and constant in normal times, it
becomes lower and time-varying following a displacement. This leads to weak extrapola-
tion and momentum in normal times, and to bubbles and crashes after displacements.

In Section 1 we model normal times shocks as independent draws from the same known



distribution. For example, these shocks may come in the form of earnings announcements.
Informed traders are better able to immediately understand the implications of these
shocks, while uninformed retail traders learn more slowly by observing how the market
reacts to them. When this is the case, informed traders are always one step ahead of
uninformed traders, and their edge is high and constant. Partial equilibrium thinkers
then neglect a small source of price variation, leading to weak departures from rationality.

This is no longer true following a displacement. In Section 2 we model displacements
as a positive and uncertain shift to the mean of the distribution from which shocks are
drawn, and we show how these shocks lead to time-variation in informed traders’ edge.
Displacements are meant to capture “something new under the sun,” such as technologi-
cal revolutions or financial innovations. These shocks wipe out much of informed agents’
edge as not even the most informed of informed agents are able to immediately grasp
the full long-term implications of such events, which instead can only be learnt gradually
over time (Péstor and Veronesi 2009). As informed traders lose their edge, they trade less
aggressively, allowing the influence on prices of uninformed traders’ beliefs to increase.
When this is the case, partial equilibrium thinkers neglect a greater source of price vari-
ation, leading to a stronger bias. These forces contribute to fueling the strength of the
feedback between prices and beliefs, allowing both to accelerate away from fundamentals.
As informed traders learn more about the displacement over time, they regain their edge,
leading to a gradual fall in the degree of extrapolation, and in the strength of the feedback
effect. When the feedback effect runs out of steam, the bubble bursts, and prices and

beliefs converge back towards fundamentals.



As well as capturing the key features of the Kindleberger (1978) narrative, our dis-
tinction between normal times and displacement shocks also allows us to highlight a the-
oretically novel and empirically relevant prediction on investors’ trading behavior. Our
model predicts that uninformed traders can switch from trading contrarian with respect
to short-run returns in normal times, to trading momentum with respect to short-run
returns during bubbles and crashes. This speaks to empirical evidence in Kogan et al.
(2023), who show that the same retail investors trade contrarian in gold, but momentum
in crypto. To the best of our knowledge, ours is the first theoretical contribution that
rationalizes these findings, which had previously been framed as puzzling.

Finally, Section 4 studies how our bias interacts with intertemporal trading motives,
and shows that whether speculators amplify bubbles or arbitrage them away depends on
their higher order beliefs. Consistent with prior findings, we show that if informed traders
think that they live in a rational world and that mispricing is temporary, they arbitrage
bubbles away immediately, and bubbles and crashes do not arise. If instead they realize
that other traders are biased, that future mispricing is predictable and that they can sell

the asset to “a greater fool” in the future, they ride the bubble and amplify it further.

1 Normal Times

In this section we introduce our notion of partial equilibrium thinking (PET) in normal
times, which we think of as periods where shocks come in the form of regular earning
announcements that do not cause significant changes in the composition of traders in the

market, or in the relative confidence of traders.



1.1 Setup

We consider an infinite period model, where agents solve a portfolio choice problem be-

tween a risk-free and a risky asset.

Assets and fundamentals. The risk-free asset is in elastic supply and we normalize
the risk-free rate to one. The risky asset is in fixed net supply Z and pays a liquidating
dividend when it dies at an uncertain terminal date.* In each period, with probability 3
the asset remains alive and produces u; ~ N (0, ¢2) worth of terminal dividends, and with
probability (1 — /) the asset dies, and all accumulated dividends are paid out (Blanchard
1985). Introducing an uncertain terminal date is a simple and effective modeling device
that increases tractability by serving two key purposes: it allows us to study partial equi-
librium thinking in isolation from horizon effects that come into play when approaching
a fixed terminal date, and it keeps variances bounded even as we allow the terminal date
to be arbitrarily far into the future.’

From the point of view of period ¢, the asset is still alive in period t4h with probability
p". Taking expectations over all possible terminal dates, the present value of the terminal

dividend in period ¢, conditional on realized future shocks {us,,}52, can be written as:°

EDrl{u;} o) = D+ 3y + i B Eufuurs 1)

J=0

4The fixed supply ensures that prices are fully revealing (Grossman 1976). Online Appendix C allows
for the supply of the risky asset to be stochastic, so that prices are only partially revealing (Diamond
and Verrecchia 1981). The key intuitions remain unchanged.

50nline Appendix I considers many alternative processes for the dynamic evolution of fundamentals.
The way partial equilibrium thinking interacts with different types of shocks is robust to these variations
without an uncertain terminal date. We choose this process of fundamentals for tractability.

8The subscript T stands for Terminal dividend, and not for period T.



where D > 0 is constant and is common knowledge. This expression shows that standing
in period ¢, the asset has already produced Z;zo u; while alive in these first ¢ periods;
moreover, with probability 4" the asset is still alive in period ¢ + h, and produces an
amount u;,,. This survival probability £ acts as a very natural discount rate such that

dividends paid further into the future receive a lower weight today.

Objective function. Our economy is populated by a continuum of measure one of
fundamental traders, who have mean-variance utility, and solve the following portfolio
choice problem in each period:

1
max {X@t (Ei,t [DT] — pt) - §AXi27tVi,t [DT]} (2)

Xt

where X, is the dollar amount that agent 7 invests in the risky asset in period ¢, A is the
coefficient of absolute risk aversion, and E,;[Dy| and V,,[Dr| refer to agent i’s posterior
mean and variance beliefs about the fundamental value of the asset conditional on their
information set in period t. The corresponding first order condition yields the following
standard demand function for the risky asset, which is increasing in agent ¢’s expected

payoff, and decreasing in the risk they associate with holding the asset:
Xy = T (3)

This objective function allows us to study partial equilibrium thinking in isolation of

intertemporal trading motives. This has two advantages. First, it increases tractability



substantially. Second, it allows us to study the role of partial equilibrium thinking in
isolation from speculative motives, which have been studied in earlier work (Abreu and
Brunnermeier 2002). In Section 4 we consider the more common objective function with
mean-variance utility over next period wealth, with traders who forecast next period
payoffs as opposed to long-term fundamentals. In Appendix F, we additionally allow
informed traders to solve the full intertemporal dynamic trading problem as in He and

Wang (1995). The core intuitions are unchanged with these alternative specifications.

Information structure and beliefs. Turning to the information structure, we assume
that a fraction ¢ of agents are informed (e.g. institutional investors), and observe the
fundamental shock u; in every period. The remaining fraction (1 — ¢) of agents are
uninformed (e.g. retail traders) and do not observe any of the fundamental shocks, but
can learn information from prices.

Given experimental evidence that traders tend to extrapolate recent price trends
rather than instantaneous price movements (Andreassen and Kraus 1990), we assume
that traders learn information from past as opposed to current prices, as with the positive
feedback traders in De Long et al. (1990), Hong and Stein (1999), Barberis et al. (2018).7

Importantly, while other details of our setup where chosen for tractability, the asym-
metric nature of the information structure, and learning from past as opposed to current
prices are key assumptions for our model. The first assumption allows informed agents

to have an edge relative to uninformed traders, and we think of it as capturing different

“Online Appendix J shows how the main intuitions go through even when uninformed traders submit
market orders that do not condition on the current price level.



types of market participants (e.g. hedge funds vs retail traders), consistent with the focus
on “insiders” and “outsiders” playing distinct roles in historical narratives. The second
assumption (which is common in models of extrapolative expectations, e.g. De Long
et al. 1990, Hong and Stein 2007 and Barberis et al. 2018) allows the feedback effect
between prices and beliefs embedded in partial equilibrium thinking to play out dynam-
ically rather than in a single period, and is consistent with evidence on extrapolative
beliefs (Andreassen and Kraus 1990, Case et al. 2012). One way to rationalize this is
to think of models of extrapolative beliefs as embedding an additional layer of bounded
rationality, which prevents traders from updating their beliefs and trade at the same time,

and instead induces them to perform these two tasks sequentially.

Equilibrium. To solve the model, we proceed in three steps. First, we solve for the
true price function which generates the outcomes that agents observe. Second, we turn
to PET agents’ beliefs of what generates the prices they observe, which allows us to pin
down the mapping that PET agents use to learn information from prices. Finally, we

solve the equilibrium recursively, and study the properties of equilibrium outcomes.

1.2 True Price Function in Normal Times

To solve for the true market clearing price function, we need to specify agents’ posterior
beliefs, compute agents’ asset demand functions, and impose market clearing. Starting

from agents’ beliefs, we know that in period ¢ all informed agents trade on the information

10



they receive, and update their beliefs accordingly:

E;+[Dr] = Es1[Dr] + us (4)
o) 2
Vi Dr] =V, LE:I ﬂhut+h1 = <1f52> o2 =V; (5)

Instead, all uninformed agents learn information from past prices. Let u;_; be the
fundamental shock which uninformed traders learn from the past price they observe,
P,_1. More generally, we denote with a *~ uninformed traders’ beliefs about a variable. In
this case, since prices are fully revealing, uninformed traders believe they are extracting
from P,_; the exact fundamental shock that informed traders observe in t — 1, so ;1 is
uninformed agents’ belief of the ¢ — 1 fundamental shock, u; 1. For now, we treat ;1
as a generic signal uninformed traders learn from past prices, and we derive this as an
equilibrium object in the next section where we explicitly solve for the inference problem.®

We can write uninformed traders’ posterior beliefs as:

Ev[Dr] = Eyy—1][Dr] + @1 (6)
V[ Dr] = Vg [ut + i Bhut—i-h] = (1_152> o2 =Vy (7)
h=1

Importantly, comparing (5) and (7) shows that informed traders have an edge relative
to uninformed traders. While informed traders always face uncertainty over all future

fundamental shocks, uninformed traders additionally face uncertainty over the current

8Whether @;_1 = u¢—1 or @;—1 # us—1 depends on the mapping uninformed traders use to extract
information from prices. In Sections 1.3 and 1.4 we show that if traders have rational expectations, then
Ut—1 = us—1, but if instead they use a misspecified mapping, as with partial equilibrium thinking, they
extract biased information from prices and ;1 # us_1.

11



shock, as they only learn information from past prices. Specifically, we define the aggregate
informational edge of informed traders (¢) as the aggregate confidence of informed traders

relative to the aggregate confidence of uninformed traders:®

_ ¢ 7
C:(l_ﬁb)TU (8)

where 7, = (V;)! is the confidence of agent ¢ € {I,U}. This edge is increasing in
the fraction of informed traders (¢), and in the relative individual level confidence of
informed and uninformed traders (77/7/). Since in normal times ¢ and 77/r; are constant,
the informational edge is also constant.

Given agents’ posterior beliefs, we can compute their asset demand functions and
impose market clearing to find that prices are a weighted average of agents’ beliefs minus

a risk premium component that compensates them for bearing risk:

Pt = CLELt[DT] + b]EUJ[DT] —C (9)
where:
¢ 1
=— ; b=— 10
“=11¢ 14 ¢ (10)

and ¢ = +AZ The expressions in (10) then show that the influence on prices of

1-¢)1v*

informed (uninformed) agents’ beliefs is increasing (decreasing) in informed agents’ infor-

mational edge. Taking first differences of the price function in (9) and of agents’ beliefs

9Consistent with our notion of information edge, Giglio et al. (2021) show that investors who have
greater confidence in their beliefs also trade more aggressively in their beliefs.

12



in (4) and (6) we find that price changes reflect both informed traders’ instantaneous

response to shocks, and uninformed agents’ lagged response:

Apt = aug + bat,1 (11)
~—
instantaneous response of [ lagged response of U
to new information from learning from past prices

To solve for equilibrium dynamics, we need to determine what information ;_; un-
informed traders learn from past prices. To do so, we need to specify what uninformed
agents think is generating the price changes that they observe. We first explore the infer-

ence problem under rational expectations, and then turn to partial equilibrium thinking.

1.3 Rational Expectations Benchmark

If uninformed traders have rational expectations, they perfectly understand that (11) gen-
erates the price changes they observe, and are therefore able to infer the right information

from prices:*°

ﬂ/t—l = Ut—1 (12)

However, for uninformed agents to understand the mapping in (11), they must per-

fectly understand other agents’ actions and beliefs, an assumption which we now relax.

10T keep this rational benchmark as close as possible to our notion of partial equilibrium thinking, we
restrict uninformed rational traders to also learn information from past prices. This allows us to highlight
the role of partial equilibrium thinking above and beyond the role of learning from lagged as opposed
to current prices. While learning from past prices is a key aspect of models of extrapolative beliefs, it
cannot on its own deliver the dynamics that are characteristic of bubbles and crashes, as is clear from
the rational benchmark we study. Appendix B.1 explicitly solves for this rational benchmark.

13



1.4 Partial Equilibrium Thinking

An extensive literature in behavioral economics and psychology has rejected the assump-
tion of common knowledge of rationality, and shown that people make mistakes when
learning information from equilibrium outcomes, often neglecting the equilibrium implica-
tions of other agents’ learning (Stahl and Wilson 1994, Nagel 1995, Kiibler and Weizsécker
2004, Ziegelmeyer et al. 2013, Penczynski 2017, Eyster et al. 2018, Andre et al. 2024, Han
et al. 2024). We build on this evidence and model uninformed agents as partial equilibrium
thinkers (Bastianello and Fontanier 2024), who misunderstand what generates the price
changes they observe because they fail to realize the general equilibrium consequences
of their actions. The way PET manifests itself is that all agents learn information from
prices, but they fail to realize that others do too.

Formally, PET agents think that in period ¢ — 1 informed agents update their beliefs

with the new fundamental information they receive, @;_;:'*

fEl,t—l[DT] = El,t—2[DT] + Up—q (13)

Vi1[Dr] = (52> l=V, (14)

On the other hand, they think that all other uninformed agents do not learn informa-

tion from prices, and instead trade on the prior beliefs they held in period ¢ = 0:

Eys-1[Dr] = Eyy—2[D] = D (15)

" The use of t — 1 subscripts instead of ¢ is to highlight that uninformed agents learn information from
past prices, so that in period ¢ they must understand what generated the price in period ¢ — 1.

14



ToealDrl = ({2 ) 2 =0 (16)

-5

where the equivalences in (14) and (16) highlight that in normal times, PET agents
understand that all agents face constant uncertainty over time.'2

Given these beliefs and the corresponding market clearing condition, PET agents think

that the equilibrium price in period ¢t — 1 is given by:

Py =aEr, 1 [Dy] + bEyy1[Dr] — ¢ (17)

where:
azljé leif (18)
and ¢ = Miib)ﬁ] and ( = %%.13 Taking first differences of the perceived price

function in (17), and of uninformed agents’ perceptions of others’ beliefs in (13) and (15):

APt—l — dat—l (19)

instantaneous response of
to new information

which shows that when agents think in partial equilibrium they attribute any price change
they observe to new information alone. In so doing, they neglect the second source of

price variation in (11), which is due to the lagged response of all other uninformed traders.

12Moreover, since V; = V; < Vy = Vy, PET agents are not misspecified about other agents’ second
moment beliefs, and they understand that informed agents have an informational edge.

13From (14) and (16), we see that 7; = 77 and 7y = 717, so in normal times ¢ = ¢. We still distinguish
between these two quantities at the outset because displacement shocks draw a wedge between ¢ and (.

15



PET agents then invert the mapping in (19) to extract @;_; from prices:!4

iy = (i) AP, (21)

Therefore, PET provides a micro-foundation for extrapolative expectations as unin-
formed traders extract a positive signal and become more optimistic whenever they see a
price rise, and extract a negative signal and become more pessimistic whenever they see a
price fall. This is unlike the rational expectations benchmark, where uninformed traders
become more optimistic (pessimistic) following a price rise (fall) only if that price change
is due to new information. They instead do not update their beliefs if the price change is
due to the lagged response of uninformed traders who are learning from past prices.

The bias inherent in partial equilibrium thinking is then increasing in the source of
price variation they neglect, which, in turn, is decreasing in informed traders’ informa-
tional edge. Intuitively, a lower edge increases the influence on prices of uninformed

agents’ beliefs, leading PET agents to omit a greater source of price variation.

Proposition 1 (Micro-foundation of return extrapolation). Partial equilibrium thinking

14We can compare this to the mapping used by rational uninformed traders, who understand that (11)
generates the price function they observe, and therefore use the following mapping to infer information
from prices (as further discussed in Appendix B.1):

= (D on - (L) 0

Since in normal times & = a, comparing (20) and (21) makes clear that the bias inherent in partial
equilibrium thinking doesn’t come from the weight that uninformed traders put on past price changes
(which is 1/a in both REE and PET), but rather from neglecting the part of the price variation that comes
from the lagged response of all other uninformed traders. In particular, notice that it is rational to put
less weight on price changes when informed traders’ edge is higher: when this is the case, information is
incorporated more strongly into prices, so that traders have to extrapolate less strongly to recover that
information. Online Appendix G extends this discussion to the case where prices are partially revealing.

16



provides a micro-foundation for extrapolative expectations:

Ev:[Dr] = Eys—1[Dr] + <;) AP, (22)

where é =1+ % Moreover, given a one-off shock to fundamentals, the bias is decreasing

in the true and perceived informational edge of informed traders:

b
Up_1 — Up—1 = (&) () (23)

where

Qo
|
/N

i
i
oY
SN—
/N
[S—y
+
Y
N—

Proof. All proofs are in Appendix A. O]

1.5 The Feedback-Loop Theory of Bubbles

Combining the expressions of the true price function in (11) and of the extracted signal

in (21), we find that when traders think in partial equilibrium changes in prices and in

beliefs evolve as an AR(1):'?

_ b\ .
U1 = U1 + <d> U2 (24)

> AP, (25)

15Combining the expressions of the true price function in (11) and of the extracted signal in (21) yields
Uty = (2/a) us—1 + (b/a) Gs—2. Since @ = a in normal times, this expression reduces to the one in (24).

17



This is in contrast to the rational benchmark where, combining (11) and (20), we find

that when traders are rational price changes evolve as an MA(1):

U1 = U1 (26)

AP, = au; + bus_q (27)

Intuitively, partial equilibrium thinkers mistakenly infer a sequence of shocks from a one-
off shock, and this leads to overreaction, as is clear from the presence of the second term
in (24) which is instead absent in the rational counterpart in (26). Following a one-off
shock, PET agents fail to realize that the second price rise is due to the buying pressure
of all other uninformed agents, and instead attribute it to further good news. This, in
turn, fuels even higher prices and more optimistic beliefs, and leads to a self-sustaining

feedback loop, just as we saw in the example in the introduction.

1.5.1 Strength of the Feedback Effect

The AR(1) coefficient in the processes that describe changes in equilibrium prices and
beliefs in (24) and (25) is key to determining the properties of equilibrium outcomes. In
our case, this coefficient also has a special meaning, in that it captures the strength of the
feedback between prices and beliefs. To study its properties, we see that it is decreasing

both in the true informational edge (¢), and in uninformed agents’ perception of it (¢):

RN
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Intuitively, when uninformed agents’ perception of the edge is low, they neglect a greater
source of price variation, leading to a greater bias. Moreover, when the true edge is low,
the influence on prices of uninformed traders’ biased beliefs is higher. Both these forces

contribute to fuelling the feedback between outcomes and beliefs.

Proposition 2 (Strength of the Feedback Effect). When agents think in partial equilib-
rium, the strength of the feedback between outcomes and beliefs is decreasing both in the
true informational edge (¢), and in uninformed agents’ perception of it (f) Environments
with a smaller fraction of informed traders (¢), and with a lower true and perceived con-

fidence of informed agents relative to uninformed agents (71/ry, 71 /7,) are characterized by

a stronger feedback between prices and beliefs and greater deviations from rationality.

1.5.2 Stable and Unstable Regions

Another feature of the AR(1) processes in (24) and (25) is that the system can be station-
ary or non-stationary, depending on whether ¢/a < 1 or /a > 1. When t/a < 1, changes in
prices and in beliefs in (24) and (25) are stationary, and shocks eventually die out, so that
prices and beliefs exhibit momentum and converge to a new steady state. On the other
hand, when ¢/a > 1 the system is non-stationary and the influence of the feedback effect is
explosive: consecutive changes in prices and beliefs get larger and larger, and prices and
beliefs accelerate in a convex way, becoming extreme and decoupled from fundamentals.

As long as the feedback effect between prices and beliefs is constant, the response of
prices and beliefs to shocks is either always stationary and convergent, or it is always

non-stationary and explosive. Since we do not observe unbounded prices and beliefs in
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response to normal times shocks (e.g. following earnings announcements), it is plausible
to assume that in normal times changes in prices and beliefs are stationary. For this to
be the case, it must be that in normal times the aggregate confidence of informed agents

is greater than the aggregate confidence of uninformed agents:!®

:l<1<:>C>1<:>¢T]>(1—¢)TU (29)

¢

Q| o

In Section 2, we show how displacements can generate time-variation in the strength
of the feedback effect, and can therefore shift the economy across stable and unstable
regions. By bringing the explosive properties of unstable regions into play before the
convergent properties of stable regions take over again, displacements can lead to the

formation of accelerating bubbles and endogenous crashes (Greenwood et al. 2019).

1.6 Trading Behavior

In this section we uncover novel empirical predictions regarding PET investors’ trading

behavior by looking at how changes in their holdings co-vary with recent price changes:

Cov(AXys, AP,) < Cov(AEy,:[Dr| — AP, AP;) (30)

= iCov(APt,l, AP,) — Var(AP,) (31)
a

_ (” _ 1> Var(AR) = (1 e 1) Var(AP,) (32)

ELQ C2

'The first equality follows from the fact that in (14) and (16) we saw that 7; = 7; for i € {I,U}, so
that ¢ = ¢. Substituting this in (28) yields (29).
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where (31) uses the expression for changes in beliefs in (20), and (32) uses the expression
for equilibrium price dynamics in (25) as well as the definition of ¢ and C.

The expression in (31) makes clear that whether PET traders are momentum or con-
trarian with respect to short-term returns depends on the relative strength of two terms:
the autocorrelation of returns and the variance of returns. The positive autocorrelation
of returns stems from the informational role of prices: when PET traders observe a price
increase, they become more optimistic about the fundamental value of the asset, leading
them to want to increase their holdings. This further increases current prices, generating
positively autocorrelated returns. The variance of returns instead captures the standard
role of prices as a measure of scarcity: when prices increase, the asset becomes more
expensive, leading all traders to want to hold less of it. The relative strength of these
two channels ultimately depends on informed traders’ edge (¢): a higher edge reduces
both PET traders’ extrapolative tendencies (1/a) and their influence on prices (b), there-
fore weakening the informational role of prices relative to their scarcity role. As long
as informed traders’ edge is high enough, in normal times PET traders are on average
contrarian with respect to short-run returns, consistent with empirical evidence on retail
traders’ behavior (Grinblatt and Keloharju 2001, Kaniel et al. 2012, Luo et al. 2023, Ko-
gan et al. 2023).17 At the same time, Appendix C shows that PET agents are always
momentum traders with respect to long-run returns.

Importantly, contrarian trading with respect to short-run returns is not inconsistent

with the evidence of extrapolative beliefs, which generally focuses on longer-period re-

"Empirical evidence suggests that in normal times returns are close to unpredictable and that the
autocorrelation of returns is much smaller than its variance, which suggests that (31) is indeed negative.
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turns. For example, Greenwood and Shleifer (2014) find evidence of extrapolative beliefs
using past twelve-month returns, while Luo et al. (2023) and Kogan et al. (2023) only

focus on traders’ response to short-run returns over a month and a week, respectively.

Proposition 3 (Trading Behavior). If ¢ > 1+T\/g’ uninformed PET traders are on average
contrarian with respect to short-run returns. Otherwise, they are on average momentum
with respect to short-run returns. PET traders are always momentum with respect to

longer-run returns.

Therefore, as in Jin and Peng (2024), partial equilibrium thinking draws a novel and
empirically relevant connection between extrapolative beliefs and retail investors’ con-
trarian trading behavior with respect to short-run returns.'® Proposition 3 furthers this
discussion by showing that changes in informed traders’ edge lead to changes in PET
traders’ trading strategy (i.e. their demand function): as we approach the threshold in
Proposition 3, differences in the information structure across environments can induce
the same PET investor to switch from trading contrarian to trading momentum (while
the underlying psychological bias remains fixed). This becomes especially clear when con-
trasting PET agents’ trading behavior in normal times and following a displacement. As
we explore further in Section 2.4 and Appendix C, displacement shocks initially dilute
informed traders’ edge (¢ < 1), and PET traders do indeed go from being contrarian in
normal times to being momentum during bubbles and crashes.

These predictions are consistent with empirical evidence in Kogan et al. (2023) who

18Jin and Peng (2024) show that retail traders’ contrarian behavior with respect to short-run returns
and momentum behavior with respect to long-run returns is also consistent with other features of investor
trading behavior, such as the disposition effect and doubling down in buying, and with the fact that both
patterns are weaker for longer holding horizons (Odean 1998, Barberis and Xiong 2012).
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show that while retail traders are contrarian with respect to short-run returns when
trading regular stocks, they are momentum traders when trading cryptos. To the best
of our knowledge, ours is the first paper that provides a theoretical reconciliation of such

differential trading behavior across environments.

2 Displacements

While the exact nature of the displacement varies from one bubble episode to another,
what these shocks have in common is that they represent “something new under the sun,”
and their full implications for long term outcomes can only be understood gradually over
time, as more information becomes available (Pastor and Veronesi 2009). When the in-
ternet was first made available to the public in 1993, investors were aware of this new
technology, but at the time nobody knew the full potential of this invention. The devel-
opment of blockchains as decentralized ledgers has paved the way for cryptocurrencies.
However, we are yet to learn about the full implications of this technology or the likeli-
hood of their future adoption, and cryptos have indeed been prone to bubbly behavior
(Kogan et al. 2023). Moreover, historical narratives also associate displacements with
periods characterized with large changes in the compositions of traders in the market,
with retail investors playing a prominent role (Aliber and Kindleberger 2015).

From a modeling point of view, we can capture displacements as shocks that generate
time-variation in either the composition of traders in the market, or in the relative confi-

dence of informed and uninformed traders. We take the latter approach, and we discuss
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alternative ways of modeling displacement shocks in Section 2.6.1°

In this section we show how displacements generate time-variation in informed agents’
edge, which in turn leads to time-varying extrapolation, and a time-varying strength of
the feedback between prices and beliefs. This can shift the economy between stable and

unstable regions, allowing for the formation of bubbles and endogenous crashes.

2.1 Displacement Shocks

We model displacements as an uncertain positive shock to long-term outcomes that agents
can learn about only gradually over time. Starting from a normal-times steady state where
uninformed agents’ beliefs are consistent with the price they observe, in period ¢ = 0 both
informed and uninformed traders learn that the terminal dividend changes by an uncertain

amount w ~ N (g, 79 ), where po > 0:2

Dr=D+) fluj+w (33)

J=0

Initially, at ¢ = 0 all agents share the same unconditional prior over w. In all periods ¢ > 1,
informed agents observe a common signal that is informative about the displacement,
sy = w + ¢ with ¢ ~% N(0,7,1). Uninformed agents do not observe these signals but
still learn information from past prices.

We solve the model using the same three steps we used in normal times.

19This is distinct from the “displacement risk” in Garleanu et al. (2012), where innovation permanently
redistributes wealth across generations and creates a priced risk factor. Our displacement shocks are
conceptually different, and alter the information advantage of informed and uninformed traders.

29Tn Section 2.5 we also consider the case where o < 0, and show how with partial equilibrium
thinking negative bubbles are dampened relative to positive ones.
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2.2 True Price Function following a Displacement

Following a displacement, informed agents observe new signals u; and s; in each period,

and they revise their beliefs via standard Bayesian updating:

E;[Dr] = Eryq[Dr] + w + wy (34)
Vy.Dr] = Vi, [Z B +w] - (35)
h=1

Ts

where Wy = EI,t[W] - Ef,t—l[w} = tretmo

(st — E;4—1][w]) is informed agents’ revision of their
beliefs about the displacement w in light of the new signal s;.
On the other hand, in each period ¢, uninformed agents learn @;_; + w;_; from the

price change they observe in period ¢ — 1, and their posterior beliefs are:
Evi[Dr| = Eps—1[Dr] + @1 + Wy (36)

Vui[Dr] = Vi |ue + Z 5hut+h +w| =Vy+((t -1+ 70)71 (37)
h=1

Importantly, (35) and (37) show that following a displacement informed traders’ edge

becomes time-varying:

¢ = < o) ) (VU+((t— 1)TS+T0)_1) (38)

1—¢ Vi + (trs 4+ 79)7 !

Initially, informed agents lose their edge (all agents are just as clueless about the displace-

ment), and they then gradually regain it, as also shown in Figure la.
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Given these beliefs, we find that, following a displacement, price changes capture both

changes in mean beliefs and changes in confidence levels:!

AP, = ar (ug + wy) + by (Up—1 + W) + (Pt\tfl — Ppl) (40)
—_———
instantaneops response of I lagged response of U ) changes in confidence
to new information from learning from past prices
where:
(Pyi-1 — Pio1) = AalEriq[Dr] + AbEyy1[Dr] —  Acy (41)
change in relative weight on .changes .in
I and U traders’ beliefs risk premium
and where a; = - =1 —b;, by = —— and ¢, = ——2Z _ are defined as in normal
1+t ? 1+Ge o1 e+(1—) Ut

times, but are now time-varying.

Equation (40) shows that price changes now reflect three components. The first two
components are due to changes in mean beliefs of both informed and uninformed traders,
just as in normal times. However, displacements now bring into play a third source of
price variation, which is due to changes in informed and uninformed traders’ relative
confidence levels. As shown in the definition of (P;;—1 — P,—;) in (41), changes in relative
confidence levels manifest themselves in two ways. First, changes in relative confidence
levels lead to a change in the relative weights on informed and uninformed traders’ beliefs
(Aa; and Ab,), thus leading to changes in the average belief, even holding individual level

beliefs fixed. Second, changes in confidence levels also lead to changes in the aggregate

2IMarket clearing yields:
Pt = a/tEi,t[DT] + thU,t[DT] — C¢ (39)

where a¢, by, and ¢; are defined in the main text. Taking first differences of this expression, using agents’
posterior beliefs in (34) and (36), and rearranging yields the expression in (40).
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risk-bearing capacity, therefore adding an additional source of price variation via changes

in the risk premium component (Ac;).

2.3 Micro-founding Time-varying Extrapolation

Just as we did in Section 1, to understand what information uninformed agents extract
from past prices, we start by specifying what uninformed agents think is generating the
price changes they observe. This, in turn, requires us to work out PET agents’ beliefs
about other agents’ actions and beliefs. Following a displacement, PET agents think that
in period ¢ — 1 informed agents trade on all signals they have received up until period

~ 1t—1 ~ t—1.

fELt—l[DT] = EI,t—Q[DT] + Up—q + Wiy (42)

Vf,t—l[DT] = V] + ((t — ].)TS + 7'0)_1 (43)

where UNJt = E[’t[u}] — El,t—l[w] = t‘rSTJSrTo (§t — E[,t_l[wD.
Moreover, PET agents think that all other uninformed agents do not learn information

from prices, and instead trade on their fixed prior beliefs:

EU,tfl[DT] = EU,th Dy = D + po (44)

VU,tA[DT] =Vy + (To)f1 (45)

where (45) shows that following a displacement PET agents believe that other uninformed
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agents face greater and constant uncertainty as they do not learn new information after
the displacement is announced. Combining (43) and (45), we see that PET agents’ per-
ception of informed agents’ edge (@_1) is initially diluted by the displacement’s increase
in aggregate uncertainty, and it then gradually rises over time as informed agents learn

more about it:

N Vy + (10)”!
gt—l - (1 _ ¢> (VI + ((t _ 1)7'5 +T0)_1> (46)

Given these beliefs, PET agents think that following a displacement price changes

only reflect two components (rather than three components as in (40)), as they once

again neglect that uninformed traders are also learning information from prices:??

AP,y = Gy (Ty—y + W) + (pt—1|t—2 — Pt—?) (48)

instantaneous response of I
to new information

changes in confidence

where (f’t,”t,g — Pt_g) captures changes in prices due to changes in confidence levels:

(ptqu - Pt—Q) = (A&t—1E1,t—2[DT] + Agt—1EU,t—2[DT]) A (49)
changes in

change in relative weight on ok .
I and U traders’ beliefs 118K premium

PET agents invert the mapping in (48), and attribute the unexpected part of price

changes to new information (@;_; + @w;_1), leading to time-varying extrapolation.

22The perceived market clearing condition yields:
P, = @R 4[Dr] + 0By [Dr] — & (47)

where @;, b, and ¢ are defined in the main text. Taking first differences, using agents’ posterior beliefs
in (42) and (44), and rearranging yields equation (40). Since uninformed traders think other uninformed
traders never update their beliefs, changes in uninformed traders’ beliefs do not show up in (48).
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Proposition 4 (Time-varying Extrapolation). Following a displacement shock, partial
equilibrium thinking leads to time-varying return extrapolation, with traders extrapolating
the unexpected part of the price change they observe. Posterior beliefs are given by:

1 By
Evs[Dr] = Eyy—1[Dr] + — (Pt—l - Pt—1|t—2> (50)

at—1

1 1
where T = 1+ o

As well as being consistent with empirical evidence on time-varying extrapolation (Cas-
sella and Gulen 2018, Bybee 2023), micro-founding the extrapolation parameter allows us
to understand the assumptions implicit in models of constant return extrapolation. These
models assume that following a structural break in prices, agents still forecast prices in
exactly the same way as they did before the structural break, which is counterfactual.

This also highlights another important point. We model partial equilibrium thinking
by staying as close as possible to the rational expectations benchmark. While the inference
problem is much simpler than the rational counterpart (since PET agents do not have to
think about higher-order beliefs) it still requires some degree of sophistication on the part
of uninformed traders. On the one hand, this is inherent in the nature of our bias, where
traders think they are the only ones learning information from prices, and think they
have an edge relative to their peers (Svenson 1981).2> On the other hand, the reduced
form nature of our bias translates into a very simple strategy and heuristic, which does

not require much sophistication. If traders think about what generates the price changes

ZPartial equilibrium thinking can either be seen as an example of the Lake-Wobegan (or better-than-
average) effect (Svenson 1981), or as agents paying limited attention to others’ informational inferences,
rather than having false beliefs about others’ inference (Eyster and Rabin 2010).
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they are learning from, it is natural for them to engage in constant return extrapolation
when the properties of the environment they are learning from are stable, and to adjust
the degree of extrapolation in response to a structural break. In other words, our theory
can be understood as explaining when and why agents change heuristics: they do so in

response to different types of shocks that change the properties of the environment.?*

2.4 Displacement, Bubbles and Crashes

By combining the results from Sections 2.2 and 2.3, we find that following a displacement

PET agents’ prices and beliefs evolve as follows:

b b ~
AP, = at(ut + wt) + <~t> AP — ((P) (Pt—l\t—2 - Pth) - (Pt\t—l - Ptl)) (52)
At at—1
(s + 0 >—(a“)<u o >+(b“)<a s s) — = (Prorica — Pioajs)
-1 -1) =1\ = -1 -1 P - —2)— = —1t—2 — L-1t—2
t t Gy t t Gy t ¢ Gy t—1|t t—1|t

These expressions are reminiscent of the AR(1)s in (24) and (25), with two key differences,

which together contribute to bubbles and crashes following a displacement, as shown in

24This is the main distinguishing feature of our model relative to learning models where agents forecast
prices using a reduced form law of motion (Marcet and Sargent 1989, Evans and Honkapohja 1999, Adam
and Marcet 2011). For instance, in Adam et al. (2017), agents know the fundamental process but forecast
future prices according to constant-gain learning:

] -0 om ] (52)

This is similar in spirit to our expression in (50). The key difference is that we microfound the degree
of extrapolation, which in our model depends on the properties of the environment. This allows us to
explain why not all shocks lead to extreme responses, and to clarify the properties of the shocks that do.
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Figure 2. First, the strength of the feedback effect is now time-varying, so equilibrium
dynamics can shift across stable and unstable regions. When the equilibrium dynamics
shift to a non-stationary region, prices and beliefs accelerate away from fundamentals
leading to the build up of the bubble. Second, the last term in both (52) and (53) acts
as a pull-back force, that dampens increases in prices and beliefs during the formation of
the bubble. This term allows uninformed agents’ beliefs to eventually be disappointed,
leading to reversals and a crash. We now discuss both of these points in detail.

Starting from the strength of the feedback effect, it now takes the following form:

- <1+1<t> (”é) >

Figure 1b shows that following a displacement the strength of the feedback effect initially

increases as both the true and the perceived informational edges are diluted, and then
gradually declines as informed traders eventually regain their edge. Our model achieves
this by endogenizing two key channels: a lower edge translates into both a stronger degree
of extrapolation and in a greater influence on prices of uninformed traders’ biased beliefs.

Importantly, either of these channels on its own could be enough to achieve bubbles and
crashes. This means that many of the implications that arise from our distinction between
normal times shocks and displacement shocks are robust to alternative microfoundations of
return extrapolation, including models of constant extrapolation, as discussed in Appendix
B.4. Section 3 further highlights which predictions of our model hinge on either channel.

Starting from a stable region, if the increase in uncertainty generated by the displace-
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ment is large enough, the economy enters an unstable region (b:/a, > 1), before returning

to a stable one (lim;_,o bt/a; < b/a < 1).2°

Proposition 5 (Time-varying Strength of the Feedback Effect). When agents think in
partial equilibrium, the strength of the feedback effect between prices and beliefs becomes
time varying in response to a displacement shock. In each period t, it is decreasing both
in the true informational edge ((;), and in uninformed agents’ perception of it ((;). In the

long-run, the feedback effect converges to a steady-state value strictly lower than 1.

Figure 1: Time variation in informed traders’ edge and in the strength of the feedback
effect following a displacement. The dotted line at b/a = 1 on the right panel separates the stable
region (b/a < 1) from the unstable region (/a > 1). Starting from a normal times steady state, a
displacement is announced in period ¢ = 0. This leads informed traders to lose their edge and the
strength of the feedback effect to initially rise. Then, as informed traders gradually regain their edge,
the strength of the feedback decline over time. The initial increase in ¥/a is increasing in the uncertainty

associated with the displacement (7o) ~?.
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While non-stationary regions allow prices and beliefs to become extreme and decou-

pled from fundamentals, a time-varying strength of the feedback effect is not enough to

25In the long run the economy always returns to a stable region, as lim; .o bt/a; < b/a < 1 since
lim; 00 (by — b) = 0 and limyoo(a; — @) > 0, where the last inequality follows from the fact that

2= (35) (4 - () ()
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lead to the bursting of the bubble. Indeed, we need uninformed agents to infer negative
information from prices (@;—1+w;—; < 0) and price changes to become negative (AP, < 0)
for prices and beliefs to revert back towards fundamentals and for the bubble to burst.
Moving from an unstable to a stable region simply ensures that price changes go from
being positive and increasing to positive and decreasing over time, but does not deliver
negative price changes on its own.?® To achieve negative price changes that induce the
reversal, we need stability together with the presence of the last correction term in (52).27

To gain further intuition as to why PET traders’ beliefs are eventually disappointed,
notice that the intercept term in (52) is coming from uninformed traders’ misunderstand-
ing of the part of the price change due to changes in confidence alone. Following a positive
displacement shock, PET agents mistakenly think that informed traders are more opti-
mistic than uninformed traders. Fixing individual beliefs, as informed traders regain
their edge over time, PET traders think that the average belief becomes more optimistic
(Aa,E;,[Dp] + Ab;D > 0), and that this pushes prices up further. In reality informed
traders are less optimistic than uninformed traders, so that, as informed traders regain
their edge, the average belief actually becomes less optimistic over time and closer to
the rational benchmark (Aa/E;;[Dr|+ AbEy, < 0). This puts a negative (corrective)
pressure on prices. By over-estimating the part of the price change due to changes in

confidence levels, partial equilibrium thinkers eventually expect price rises that are higher

26In other words, a time-varying :/a,_, would not be enough to get a reversal if equilibrium price
changes evolved as follows:

b
AP, = ag(ug +wy) + (~ ‘ ) AP, (55)

at—1

Following a one-off positive shock to fundamentals (u; + wy > 0 for ¢ = 0 and u; + w, = 0 for t > 0),
there would be no term that allows for AP, to become negative, unlike the additional term in (52).
27 Appendix B.3 provides additional details of how reversals may only occur once Z—j < 1.
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than the price changes that they observe. When this occurs, their beliefs are disappointed,
leading them to become more pessimistic, and the bubble to burst.

Figure 2 shows the path of equilibrium outcomes following a displacement shock.
Initially, as the economy enters the unstable region, prices and beliefs accelerate away
from fundamentals in a convex way, and reach levels several multiples of the fundamental
value of the asset (Greenwood et al. 2019). As the strength of the feedback effect weakens,
and the economy re-enters the stable region, PET agents’ expectations are disappointed,
leading the bubble to burst, and prices and beliefs to converge back towards fundamentals.
Partial equilibrium thinking naturally delivers these key characteristics of bubbles by
exploiting the properties of unstable regions. The duration of the bubble is then longer
and its amplitude greater when the uncertainty associated with the displacement is higher,
and it takes longer to resolve over time, as in these cases equilibrium dynamics spend
longer in the non-stationary region. Therefore, the exact shape of the bubble depends on
the speed with which information about the displacement becomes available over time. If
information about the displacement is revealed slowly at first, and at a faster rate once
the bubble bursts, the model can deliver a slower boom and a faster crash (Ordonez 2013).

Moreover, Figure 2b shows that while the initial stage of the bubble is associated with
high trading volume (Barberis 2018, Hong and Stein 2007), our model is also consistent
with recent evidence in DeFusco et al. (2020) that documents a quiet period before the
bust, during which trading volume is falling while prices are still rising. Partial equilibrium
thinking leads to endogenously heterogeneous beliefs, and during the formation of the

bubble disagreement increases initially at an increasing and then at a decreasing rate.
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Finally, as discussed in Section 1.6 and shown more formally in Appendix C.2, during
bubbles and crashes PET traders go from being contrarian to momentum with respect to
short-run returns. To the best of our knowledge, ours is the first theoretical contribution

that rationalizes this evidence, which was raised as a puzzle in Kogan et al. (2023).

Figure 2: Bubbles and crashes following a displacement. Starting from a normal times steady
state, a displacement w ~ N(po, 7 1) is announced in period ¢ = 0, and we let its realized value be
w = po. Informed agents then receive a signal s; = w + ¢ with €, ~ N(0,7; 1) each period, where €; > 0
and e; = 0Vt > 1. This figure compares the path of equilibrium prices and trading volume, under rational
expectations and under partial equilibrium thinking.
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2.5 Negative Bubbles

Interestingly, negative bubbles with pg < 0 are not merely symmetric, and instead are
dampened relative to positive bubbles, as shown in Figure 3. To understand why this is the
case, we ought to focus on the true and perceived risk-premium components. Regardless
of the sign of the displacement shock, the gradual resolution of uncertainty over time
exerts an upward force on prices, as the increased risk-bearing capacity reduces the risk-

premium component. However, PET agents under-estimate this upward force, as they
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believe that other uninformed traders are not learning and becoming more confident over
time. By under-estimating the increase in risk-bearing capacity, they then under-estimate
the upward force on prices coming from changes in risk premia, and instead attribute part
of this to better fundamentals. This force is at play both when the cash flow shock of the
displacement is positive, and when it is negative, therefore amplifying positive bubbles
and dampening negative ones (Martin and Papadimitriou 2022). This in contrast to

equilibrium dynamics with constant return extrapolation, where this dampening channel

is absent, and where negative bubbles are more pronounced than positive ones.?®

Figure 3: Asymmetry between Positive and Negative Bubbles. Starting from a normal times
steady state, a displacement w ~ N (po, 7y 1) is announced in period ¢t = 0. Informed agents then receive a
signal s; = w + ¢; with ¢, ~ N (0,7, !) each period, where ¢; > 0 and ¢, = 0 V¢ > 1. This figure compares
the path of equilibrium prices for positive and negative bubbles. For a given size shock in absolute value,
negative bubbles are dampened relative to positive bubbles.

(a) Positive Bubble 19 > 0 (b) Negative Bubble po < 0
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28Tntuitively, the initial increase in uncertainty associated with a displacement exerts a downward
pressure on prices, which dampens positive cash flow shocks, and amplifies negative cash flow shocks.
Fixing the size of the cash flow shock in absolute value, this asymmetry then leads to a greater initial
price change following a negative shock relative to the same size positive shock. Extrapolating a greater
initial price change with constant return extrapolation then leads to more amplified dynamics in response
to negative shocks. Appendix B.4 discusses this in more detail.
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2.6 Other Types of Displacements and their Measurement

A key lesson from our analysis is that shocks that generate bubbles and crashes must have
two properties: they must shift the economy to an unstable region, and the shift must
be temporary. So far, we have modeled this via a positive shock that creates uncertainty,
which gradually resolves over time. However, the sources of variation in Z—i are informative

about other types of shocks which may contribute to the formation of bubbles and crashes.

Specifically, we can write the strength of the feedback effect as follows:

b (1 1 O T\ (b T
i <1+<t> (” &) <l = (1—¢tmt> (1—@@) >1 (56)

where the second inequality uses the definition of the true and perceived informational

edges.?? Moreover, (56) generalizes our earlier expressions by allowing the fraction of
informed agents to be time-varying, and by allowing uninformed agents to be misspecified
about this quantity (qNSt # ¢;). There are four components of the information structure
that can then lead to time-variation in the strength of the feedback effect: the true and
perceived confidence of informed agents relative to uninformed agents, and the true and
perceived composition of agents in the market.?® Temporary shocks to these quantities
can also contribute to the time-varying strength of the feedback effect.

For example, Greenwood and Nagel (2009) find that young inexperienced investors in-

creased exposure to technology stocks during the dot.com bubble, and decreased it during

29Re-arranging the first inequality, we get: (1 + () > (1}’—5’) = GG > 1
t
39Tmportantly, notice that the key quantity that determines whether our economy enters non-stationary
regions concerns the relative confidence of informed and uninformed traders, rather than their absolute
confidence levels. Therefore, our model does not rule out displacements which lead uninformed traders to

become more confident than they are in normal times. This would require an alternative microfoundation.
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the crash. More generally, historical narratives associate displacements with large changes
in the composition of traders (Aliber and Kindleberger 2015). Our paper highlights how
changes in the composition of traders constitute another source of time-variation in the
strength of the feedback effect, and hints to how the timing of these changes can play an
important role in determining the shape and amplitude of bubbles.

Having shown the importance of distinguishing between normal times and displace-
ment shocks, our model offers a framework to start exploring these alternative directions.
Empirical evidence on how the composition and confidence of traders varies during these
episodes would shed further light on the key changes that characterize displacements.3!
For example, one could use the share of institutional investors to proxy for ¢ (as in Gom-
pers and Metrick 2001, Boehmer and Kelley 2009 and Yan and Zhang 2009), or the fraction
of retail traders to proxy for 1 — ¢ (as in Laarits and Sammon 2022). These measures can
be further refined by using holdings data to identify different groups of investors (Calvet
et al. 2009, Gabaix et al. 2023). For example, Balasubramaniam et al. (2023) show that
investors with higher turnover and more undiversified accounts favor young, lottery-like
stocks, therefore suggesting that the fraction of uninformed traders might be higher for
those assets. Similarly, the informativeness of investors can be assessed by inverting their
asset demands to reveal the properties of their expectations and the extent to which they
are predictive of future returns (Egan et al. 2022).

Turning to confidence levels, one proxy could be obtained from the dispersion in

individual level beliefs. Some surveys elicit probability distributions over future out-

31Recent advances in machine learning also lend themselves to real-time measurement of new economic
environments that characterize displacements (Bastianello et al. 2024, Gabaix et al. 2024, Sarkar 2025).
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comes, rather than just point forecasts. Changes in confidence levels can then be cap-
tured through changes in the dispersion in these elicited probability distributions over
time.?? Alternatively, the relative confidence levels of different groups could be recovered

by looking at the pass-through of beliefs to holdings as in Giglio et al. (2021).

3 Novel Empirical Predictions

Table 1 summarizes the empirical predictions of our model, together with proxies for
informed traders’ edge, which are needed to test these predictions. In this section we focus
on highlighting the predictions that are novel, and we organize the discussion around the
two key contributions of our paper: we begin by highlighting predictions that are unique
to our microfoundation of extrapolative beliefs, and we then turn to predictions that arise
from our distinction between normal times shocks and displacement shocks.

There are two sets of predictions that distinguish PET from other models of constant
return extrapolation. First, PET predicts that the degree of individual level extrapola-
tion is decreasing in informed traders’ edge. This prediction holds both in the time-series
(meaning that the degree of extrapolation may be time-varying), and in the cross-section
(meaning that traders may extrapolate with different strengths across different assets).
While prior work has shown that the degree of extrapolation is indeed time-varying at the
aggregate level (Cassella and Gulen 2018, Bybee 2023), new evidence on the variation of

the degree of extrapolation at the individual level would further corroborate our proposed

32This highlights the need to explore second moments of investors’ beliefs, which have for the most
part been under-explored relative to their first moment counterparts.
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microfoundation.?® Second, as discussed in Section 2.5, while constant extrapolation am-
plifies negative bubbles more than positive bubbles, our microfoundation of extrapolative
beliefs dampens negative bubbles relative to positive ones.

Next, our distinction between normal times and displacement shocks yields two ad-
ditional predictions. First, bubbles and crashes only arise following a displacement, con-
sistent with empirical evidence in Greenwood et al. (2019) that shows that not all price
run-ups end in a crash. Second, our theory predicts that even when uninformed traders
are contrarian with respect to short-run returns in normal times, they switch to being
momentum traders during bubbles. This is consistent with the finding in Kogan et al.
(2023) that the same retail traders can be momentum when trading cryptos, but contrar-
ian when trading regular stocks such as gold. To the best of our knowledge, our paper is

the first theoretical rationalization of these results, which had been framed as a puzzle.

4 Intertemporal Trading Motives

When explaining the stage of ‘euphoria’ characteristic of bubbles, Kindleberger (1978)
describes how “[ijnvestors buy goods and securities to profit from the capital gains associ-
ated with the anticipated increases in the prices of these goods and securities.” So far, we
have been silent on the role of destabilizing speculation in contributing to the formation of
bubbles: while partial equilibrium thinking affects how traders interpret past outcomes,

speculative motives depend on traders’ beliefs of future equilibrium prices.

33 Alternatively, one may also test whether the gain in constant gain learning models of expected
returns varies with market conditions (Nagel and Xu 2022).
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Table 1: Empirical Predictions and Proxies for Informed Traders’ Edge. This table outlines the key predictions of our model, together
with existing evidence, and additional tests. It ends by offering proxies for informed traders’ edge, which may be used to test these predictions.

Empirical Moment

‘ ‘ Model Prediction

‘ Existing Evidence

‘ Further Tests

Bubble and crashes follow displacements that dilute
informed traders’ edge.

Bubbles have accelerating price paths.

Negative bubbles are dampened relative to positive
bubbles.

Kindleberger (1978) documents that the first stage of bub-
bles is characterized by displacements. Greenwood and
Nagel (2009) show that during bubbles funds that are man-
aged by younger (less experienced) managers get more in-
flows (and a greater influence of uninformed traders dilutes
informed traders’ aggregate edge in our model). Green-
wood et al. (2019) document accelerating price paths dur-
ing the formation of bubbles.

Test whether the individual level
confidence of informed traders rel-
ative to uninformed traders falls at
the onset of bubbles.

Uninformed traders extrapolate past price changes
in forming cash flow expectations.

The degree of extrapolation is decreasing in in-
formed traders’ edge.

Chaudhry (2024) shows that increases in prices unrelated
to cash flow news raise analyst cash flow expectations. Cas-
sella and Gulen (2018) document that the aggregate level of
extrapolation is highly time-varying. Bybee (2023) shows
that sentiment responds to return shocks significantly more
during run-ups that crash than during those that do not.

Test variation in the degree of ex-
trapolation at the individual level.
Test whether the degree of extrap-
olation is decreasing in informed
traders’ edge both in the time se-
ries and in the cross section.

Uninformed traders’ expected returns covary more
strongly with recent relative to distant past returns.
When informed traders’ edge is lowered, this pattern
is accentuated.

Uninformed traders’ expected returns are pro-
cyclical. Informed traders’ expected returns are
counter-cyclical.

Average subjective expected returns are pro-cyclical.
Objective expected returns are counter-cyclical.
‘When informed trader’s edge is low enough, average
subjective expected returns are less cyclical than ob-
jective expected returns. Lowering the edge makes
this pattern more pronounced.

Nagel and Xu (2022) show that subjective expected returns
are well described by a model of constant gain learning,
with more recent returns receiving a greater weight than
more distant ones. Greenwood and Shleifer (2014) shows
that retail traders’ return expectations are pro-cyclical, and
Bastianello (2024) documents that sell-side analysts’ return
expectations are counter-cyclical. Nagel and Xu (2023)
shows that subjective expected returns are much less cycli-
cal than objective expected returns.

Test whether subjective expected
returns covary more strongly with
more recent price changes (rela-
tive to more distant changes) when
informed traders’ edge is lower.
In models of constant gain learn-
ing this is equivalent to testing
whether the gain varies with mar-
ket conditions. Test whether av-
erage subjective expected returns
are less cyclical when informed
traders’ edge is lower.

Price Dynamics .
L]
L]
Degree of Extrapolation .
L]
Expected Returns .
L]
L]
L]
Asset Holdings .
L]

In normal times, uninformed traders are contrarian
with respect to short-run returns and momentum
with respect to long-run returns.

After a displacement, uninformed traders switch to
being momentum with respect to both short-run and
long-run returns.

Note: same trader exhibits different trading behav-
ior during normal times and bubbles.

Grinblatt and Keloharju (2001), Kaniel et al. (2012), Luo
et al. (2023) document that retail traders are contrarian
with respect to short-run returns. Kogan et al. (2023) show
that retail traders are contrarian with respect to short run
returns when trading regular stocks, but they are momen-
tum traders when trading cryptos.

Test whether uninformed traders’
tendency to be contrarian varies
with informed traders’ edge.

Proxies for Informed Traders’ Edge

Fraction of Informed Traders

Gompers and Metrick (2001), Boehmer and Kelley (2009) and Yan and Zhang (2009) use the share of institutional investors to proxy for the fraction of
informed traders, while Laarits and Sammon (2022) use the fraction of retail traders as a proxy for the fraction of uninformed traders. These measures
can be refined by using holdings data to identify different groups of investors (Calvet et al. 2009, Gabaix et al. 2023). For example, Balasubramaniam
et al. (2023) show that investors that hold higher turnover and more undiversified accounts favor young, lottery-like stocks, therefore suggesting that
the fraction of uninformed traders might be higher for those assets. Similarly, the informativeness of investors can be assessed by inverting their asset
demands to reveal the properties of their expectations and the extent to which they are predictive of future returns (Egan et al. 2022).

Relative Confidence

Bae et al. (2008) proxies for informed traders’ edge by looking at the difference in the size of forecast errors of informed and uninformed traders. When
surveys elicit beliefs as probability distributions rather than point forecasts, confidence levels can be inferred by the second moment of the probability
distribution provided. Giglio et al. (2021) suggest proxying for traders’ confidence by looking at the pass-through of their beliefs in to holdings.




To study how partial equilibrium thinking interacts with speculative motives, we now
change agents’ objective function. Instead of having agents who are only concerned with
forecasting the terminal dividend as in (3), we now let agents have mean-variance utility

over next period wealth, which leads them to forecast next period’s payoft:

My = Bl + (1= B)Dy (57)

which simply reflects traders’ beliefs that with probability 3 the asset is alive next period,
and is worth P,yq, and with probability (1 — ) the asset dies, and pays out a terminal
dividend D,. Taking first order conditions, we obtain traders’ asset demand function:

E; 1] — P,

Xig =
AV ]

(58)

In Appendix E we solve the model with speculative motives using the same three steps
as in Section 2, and show that the true price function is linear in agents’ beliefs, and that

partial equilibrium thinking still provides a micro-foundation for return extrapolation:

P, = a;Er4[is1] + 0 Ep [ q] — ¢ (59)

Ev 1] = Eyy—1[ILiq] + 6, (Ptq — pt—1|t—2) (60)

where a4, b, ¢; and 6, are once again constant in normal times, but become time-varying
following a displacement. While these coefficients still depend on the properties of the

environment, their functional form depends on agents’ higher order beliefs. Since agents
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are forecasting endogenous outcomes, they need to forecast other agents’ beliefs. While
partial equilibrium thinking helps to pin down uninformed agents’ higher order beliefs
(they think that all agents trade on their own private information and that this is common
knowledge), it does not discipline informed agents’ higher order beliefs. We therefore need
to make additional assumptions about informed traders’ beliefs.

In this section, we consider two cases, and show how results vary depending on in-

34 First, we let informed agents understand unin-

formed traders’ higher order beliefs.
formed agents’ biased beliefs, which in turn implies that they understand that mispricing
is predictable. Second, we consider the case where informed agents mistakenly believe
that all other agents are rational and extract the right information from prices. We refer

Y

to the first type of speculators as being “PET-aware,” and to the second type as being
“PET-unaware.” This lines up with the distinction in practical asset management be-
tween investors who think about behavioral biases in the market, and those who only
concentrate on the gap between market prices and their estimates of fundamentals.
Figure 4 contrasts the dynamics of equilibrium outcomes in normal times and following
a displacement, with and without speculative motives. As in the case without speculation,
panel (a) shows that normal times dynamics only exhibit a small degree of momentum

and speculative motives keep prices closer to fundamentals. After a displacement shock,

however, panel (b) makes clear that the dynamics are influenced by the behavior of

34While we only consider the case where all informed traders are either “PET-aware” or “PET-
unaware” and this is common knowledge to them, Abreu and Brunnermeier (2002) provide a compre-
hensive study of how higher order beliefs in forecasting future outcomes can make mispricing persistent
before the eventual bursting of the bubble. Our paper is complementary to theirs and our core contribu-
tion considers a very distinct channel, which is why we shut down speculative motives in the main part
of our analysis: our focus is on how higher order beliefs affect inference from past outcomes and provides
an explanation of why mispricing might exist in the first place, which they instead take as given.
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informed speculators. When informed agents understand other agents’ biases, they engage
in destabilizing speculation and amplify the bubble. Intuitively, when informed agents
realize that mispricing is predictable, they understand that higher prices today translate
into more optimistic beliefs by uninformed agents and higher prices tomorrow. This
increases informed agents’ expected capital gains and induces them to demand more of

the asset today, inflating prices further (as in De Long et al. 1990).3°

Figure 4: Normal Times and Bubbles and crashes with speculators. Panel (a) compares
the path of equilibrium prices under rational expectations, partial equilibrium thinking, “PET-aware”
speculation, and “PET-unaware” speculation in normal times. Starting from a normal times steady state,
Panel (b) considers a displacement w ~ N (uo, 7, ') announced in period ¢ = 0. Informed agents then
receive a signal s; = w + € in each period, where ¢; > 0 and ¢, =0 Vt > 1.

(a) Normal times (b) Displacement shock
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—REE —REE
a5 —PET i & —PET
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To take advantage of predictable mispricing, “PET-aware” speculators require a high
level of understanding of other agents’ actions and beliefs. Alternatively, we consider
the case where informed agents mistakenly believe that they live in a rational world and

think that uninformed agents are able to recover the right information from past prices.

35 Appendix F replicates these results when we allow informed traders to maximize utility over terminal
wealth (as opposed to next period wealth), as in He and Wang (1995). Even in that case, dynamic trading
motives generate a two-way feedback effect between prices and expected capital gains, and this further
amplifies the two-way feedback effect between prices and beliefs due to misinference.
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In this case, informed agents believe that any mispricing will be corrected next period.
This leads them to trade more aggressively on their own information, thus keeping prices

closer to fundamentals, and arbitraging the bubble away.

5 Conclusion

We develop a dynamic theory of “Partial Equilibrium Thinking” (PET) (Bastianello and
Fontanier 2024), which provides a micro-foundation for the degree of return extrapolation,
where the degree of extrapolation varies with the information structure, and is decreasing
in informed agents’ informational edge. By drawing a distinction between normal times
shocks (which do not lead to large swings in informed traders’ edge) and “displacement
shocks” (which instead do), we study how extrapolative beliefs interact with these shocks.

In normal times informed agents’ edge is constant, and PET delivers constant and
weak return extrapolation, where uninformed PET traders are contrarian with respect
to short-term returns. By contrast, following a displacement, informed agents’ edge is
temporarily wiped out, and PET agents’ degree of extrapolation is stronger at first, but
then gradually dies down. This leads to bubbles and endogenous crashes, during which the
same PET agents become momentum traders even with respect to short-run returns. This
provides a unifying theory of price dynamics and trading behavior during both normal

times market dynamics and during bubbles and crashes.
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A Proofs

A.1 Proof of Proposition 1: Micro-foundation

Combining (6) and (21) , we find that:

Eu,[Dr] = Ever[Dr] + (i) AP, (A1)

which provides a micro-foundation for extrapolative beliefs.

To see how the size of the bias varies with informed traders’ edge, start from (24):

_ b\ .
Up—1 = Up—1 + <EL> U2 (A2)

If we consider the impulse response function to a one-off shock to fundamentals in period
t =1, so that u; # 0 for t = 1 and u; = 0 for £ > 1, we can iterate the above expression

backwards, and find that:

iy = (?)H Uy (A.3)

which shows that while uninformed traders extract the right signal in the first period after
the shock, they extract a biased signal in each period thereafter. Specifically, since u; = 0

for t > 1, we have that:

N
Uy — up = (d) uy (A.4)

so that for a given fundamental shock u; the bias is increasing in the strength of the

feedback effect b/a.Since the strength of the feedback effect in (28) is decreasing in the
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true and perceived informational edges, it follows that the bias in uninformed traders’

beliefs is also decreasing in both these terms. O

A.2 Proof of Proposition 2

Strength of the feedback effect: = Combining (8) with (28), we find that:

b 1 1 1 1 1
o= () (1) - (e <”<¢‘1> ) o

The first equality shows that the strength of the feedback effect is decreasing in both the

t

true informational edge, ¢, and in uninformed agents’ perception of it, . The second
equality shows that the strength of the feedback effect is decreasing in the fraction of
informed agents in the market, ¢, and in the true and perceived confidence of informed

agents relative to uninformed agents 71 /r;, 71 /7.

Deviations from Rationality: When traders have rational expectations, they infer
the right information from prices at each point in time. Following a one-off shock in
period 0, Ey,[Dr] REE — D) 4 y, for t > 0. This reflects that rational uninformed traders
understand that there is no new information after period 0, and that all other price
changes they observe are due to the lagged response of all uninformed traders who are

also learning information from prices. Following the second price rise, they no longer
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update their beliefs. The corresponding equilibrium prices are then given by:

t
PtREE:]5+AP0-|—AP1+ZAPt:p+au0+bu0 vVt >0 (A.6)
=2
] =0

where 2322 AP, = 0 as neither informed nor uninformed agents update their beliefs after

period ¢t = 1, and in normal times the risk-premium component ( AZ ) ) is also

¢rr+(1=¢)7u
constant over time.
On the other hand, from (11) and (A.1), together with the fact that in normal times

a = a, we know that when uninformed traders think in partial equilibrium, equilibrium

beliefs and prices are given by:

_ t—1 b J
EU,t[DT] =D+ ug+ Z (d) ug Vt>1 (A7>
j=1
_ t b J
P, =P+ aug +bug + Y (d) (aug) VEt>1 (A.8)
=2

Comparing PET to REE outcomes, we see that when traders think in partial equilib-

rium, deviations from rational outcomes are given by:

S

t—1
By [Dr] — EﬁffE Dr]=>" <

J=1

J

a

t b J t—1
P, — pPFEE =% <a> aug) = Y <a> (bup) Vt>1 (A.10)

Jj=2 Jj=1

where the last equality uses the fact that in normal times @ = a. Since Informed trader’s
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beliefs are determined only by fundamentals, the deviation of aggregate beliefs from the

rational benchmark is given by:

-
|

]Et[DT] . I_EfEE[DT] = (1 — ¢) 1 <2>ju0 vVt > 1 (A.ll)

J=1

is decreasing in ¢, C, L and 7%

b
a ' Ty

From the first part of the proof, we know that
Moreover, from (10) we know that b is also decreasing in ¢, which is itself increasing
in ¢ and 7t. Combining these results with (A.9), (A.10) and (A.11), we obtain the
comparative statics in Proposition 2 for all ¢ > 1. In particular, when the equilibrium is
stable these comparative statics also hold in lim; .., as the economy approaches the new

steady state. O

A.3 Proofof Proposition 3: Contrarian Trading in Normal Times

Short-term returns: Start from the change in price:

A_Pt = CLZ <?> Ut—j (A12)
i=0 \4
For the change in demand of U, this is:

AXUﬂg X ]EU,t - EU,t—l - APt (A13)
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and note that the inference gives:
Evt —Eyi1 = ;APt_l
The covariance between the two objects of interest is thus:
Cov(AXy,, AP;) ;COU(APt_l, AP,) —Var(AP,)

Since the u shocks are iid, the two terms can be computed as:

while:

B\ 21
Cov(AP,_1,AP,) = a® Z ~> o2
: a

Cov(AP,_,AP,) = a? <2> > (

b
a
Cov(AP,_1,AP) = — <

The total covariance is then given by:

&2

b a? )
Cov(AXys, AP) x| = — 1| ——=0
1—
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)



The covariance is then negative if and only if:

;2<1 (A.22)
¢? 2
<:>1<1+C<:>§—(>1 (A.23)

so we simply need ¢ to be large enough. The solution of the quadratic is:

1++5

(> = 5 (A.24)
[
Long-run returns: For s > 2, we can write the covariance of interest as:
s—2
OO/U(AXUJ, Pt - Pt—s) =Cov AXU,t; Z A-Pt—l—j + OO/U(AXUJ, AP,L/) (A25)
j=0

Using the equilibrium expression for changes in beliefs:

1 s—2 5—2
CO'U(AXU,t, Pt — ptfs) X 5 Z Cov (Aptfl, Aptflfj) — Z CO’U(APt, Aptflfj)
j=0 7=0

1
+ =Cov (AP,_y, AP,) — Cov(AP,,AP,) (A.26)
a

Next, we can use the expression for equilibrium dynamics of price changes:

b j+1—k j b i
APt,k = (EL) APtflfj + Z (&) AU _f—; <A27)

1=0
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Substituting this into (A.26) and computing covariances yields:

b

s—2
Cov(AXyy, P — P_s) [ Var(AP,) + <5L2 — 1) Var(AP,)

(A.28)

_ (1 - b) f (Z)j Var(AP) + (;2 - 1) Var(P,)  (A.29)

j=0
s—1
10\ (1- (%) b
— ( - > ( I Var(AP,) + i 1| Var(AFR,)
(A.30)
Since g < 1 in normal times, this expression is increasing in s. Moreover for s = 2, we
have:
1—-b b b
Cov(AXyy, P — Pi_s) — 4+ — 1 Var(AP,) = TZV@T(AB) >0 (A.31)
a a a

where the last equality uses the fact that in normal times we shoed that b =1—a = 1—a.
Since (A.30) is positive for s = 2 and is increasing in s, it follows that Cov(AXy4, P —

P,_¢) >0 for all s > 2. O

A.4 Proof of Proposition 4: Time-varying Extrapolation

Before the displacement is announced, the degree of extrapolation in normal times is:

9:1+1~:1+<1—1>V1 (A.32)
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Following a displacement, inverting equation (48) yields:

Up—q + Wiy = = ! (APt—1 — (Pt—1|t—2 - Pt—2)) (A.33)

A1
Using the fact that Ey;[Dr] = Ey—1[Dy|+; + 10, and also that AP,_4 —ﬁt_l‘t_quPt_g =

Py — ptfl\tf% we get:

1 N
Eue[Dr) = Buea[Dr] + = (Pioy = Proyjes) (A.34)
t—1

where dl =1+

-1 Ct—1

is time-varying (as discussed in the main text), and captures the

strength with which partial equilibrium thinkers extrapolate price changes. O

A.5 Proof of Proposition 5: Time-varying Feedback Effect

In (54), we showed that, following a displacement, the strength of the feedback effect

takes the following form:

bt (1 1
(e ) (4 ) (4.35)

which directly shows that the feedback effect is decreasing in both the true and perceived
informational edges. The true and perceived informational edges were derived in (38) and

(46) as follows:

[ ¢ Vo +((t =17 +70) "
G = (1 - ¢> ( Vi + (trs + 10)7! ) (4.36)
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N Vy + (10)”!
Ct—l - (1 N (b) (VI + ((t . 1)7'5 + 7_0)—1> (A.37)

Since both these quantities are time-varying, it follows that (A.35) is also time-varying.

Taking the limit of this expression, we find that:

A AYAL
A G = (1_¢ v, (A.38)
I G Vo + (10)7"
tliglo Gi-1 = (1 — v, (A.39)
and hence that lim; .. (; < limy_. @—1 which directly implies lim;_, ZZ: < 1.

B Additional Derivations

B.1 Rational Expectations

When uninformed traders have rational expectations, they perfectly understand what
generates price changes they observe. In turn, this requires them to understand other
traders’ beliefs, and actions.

Formally, rational agents think that in period ¢t —1 informed agents update their beliefs

with the new fundamental information they receive, i,_;:3%

Ers-1[Dr] = Er—o[Dr] + e (B.1)

~ B 52 2
Vl,t—l[DT] =|\77%5 )0, = V[ = V[ (BZ)

36The use of t — 1 subscripts instead of ¢ is to highlight that uninformed agents learn information from
past prices, so that in period t they must understand what generated the price in period ¢ — 1, as this is
the price they are extracting new information from.
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Moreover, they also understand that all other uninformed agents learn information
from past prices. Specifically, they know that in period ¢ — 1 uninformed traders update

their beliefs by ;_o, which is the same signal that they extract from P,_5:

IEU,t—l[DT} = I~EU,t—2[DT] + U (B.3)

TupalDnl = (2 ) o

— Vu=V B.4
1— 52 4 U (B.4)

To be clear on notation, notice that, while #;_5 is in uninformed traders’ information
set starting in period ¢t — 1, @;_; is the signal that uninformed traders are extracting from
prices in period t.

Rational agents then think that the equilibrium price in period ¢ — 1 is given by:

P,y = akr; 1[Dr] + bEy; 1 [Dr] — ¢ (B.5)
L o7 _ <l = _ Q=i 1 - AZ . .
where: a:m— 1+<~, b:m—m andC:m. Slnce we saw 11

(B.2) and (B.4) that uninformed traders have correct beliefs about the posterior variances
of both informed and uninformed traders, it follows that @ = a, b = b and & = ¢, where a,
b and c are the coefficients in the true price function in (9).

Taking first differences of (B.2) and (B.4), substituting them into the first difference

S

of (B.5), and using the fact that @ = a, b = b and ¢ = ¢, we find that rational traders

understand that price changes reflect two sources of price variation, which capture changes
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in beliefs of both informed and uninformed traders:

APt_l = a ﬂt—l + b ﬂ/t_g (BG)
S~—— N——
instantaneous response  lagged response
They then invert this mapping to extract the following signal from past prices:
N 1 b\ _
o= () AP - () s (B.7)
a a

Lagging the true price function (11), and substituting it into (B.7), we then find that

uninformed traders are able to extract the right information from past prices:

’&t,1 = Ut—1 (BS)
B.2 Displacements, Bubbles and Crashes
In normal times, the strength of the feedback effect is given by:
b 1 1 1
—=—]|1l+=]==<1 B.9
i~ (o) (+) =4 )
where the second equality follows from the fact that in normal times ¢ = ¢ = (&) i\’/—lj,

and the last inequality follows from the fact that the economy must be in a stable region

in normal times.
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Following a displacement, the strength of the feedback effect is given by:

b [ 1 1
b (1 +<t> <1 n é) (B.10)
where in t = 0:
s o \Vy+ ()"
Co=Co= <1 — ¢> Vit () (B.11)
and in ¢t > 0:
(¢ \Vu+((t-Dri+1)!
G = (1 — ¢> A r—— (B.12)
N Vo + (10) "
o (1 - ¢> Vi + (trs + To)fl (B.13)

Combining (B.10) and (B.11), we find that in period ¢ = 0 the strength of the feedback

effect is given by:

b 1 1 (1 1\ b (1-9¢)\(Vy—V; (r0)~"
&0_C0_§+<C0 c)‘é*( 5 )( Vu )VU+<TO>—1 (B.14)

where the second equality simply adds and subtracts the strength of the feedback effect

o~

in normal times £ = 1, and the last equality uses ¢ = ¢ = (%) 1’/—3} and (B.11) above,

=&
and rearranges.

Ceteris paribus, for the strength of the feedback effect to enter the unstable region we
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need the uncertainty associated with the displacement (79)~! to be high enough:

_ b 9 Vu
1(1 1a) (1 ¢>> (VU V)VU (B.15)

where (1 —t/a) > 0 from (B.9). In the long run, as uncertainty about the displacement is

resolved:

. (9 \Vy

(oo = tllglo G = <1_¢ v, =G (B.16)
T % ¢ Vo + (10)™! _ :

Gl (1) T s (B.17)

Combining these expressions:
b 1 1 b

lim — = 14— -<1 B.1
- () () <3 o9

which shows that in the long run the economy always returns to a stable region, with a
steady state feedback effect that is weaker than the original normal times feedback effect.
In the main text we show that when the strength of the feedback effect evolves in this
way, prices and beliefs are initially non-stationary and accelerate away from fundamentals
in a convex way. As the feedback effect then weakens towards its new steady state
level, it eventually returns into a stable region, leading uninformed agents’ beliefs to
be disappointed, the bubble to burst, and prices and beliefs to converge back towards

fundamentals.
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B.3 Bursting the Bubble

To see how these forces play a joint role in bursting the bubble, and how the reversal can
only occur once the economy returns to a stable region, we can substitute the definitions

of (Pi—1 — Pi_1j¢—2) and (P—y — pt,”t,g) into (53), to find that beliefs evolve as follows:

N N ai_
Up—1 + Wi = (at 1) (Ers1[Dr] — Eo[Dr])
t—1
b1 L
— (1= —— | (Byy1[Dr] = Eo[Dr]) + —— (&1 — ¢-1) (B.19)
at—1 a¢—1
where Eo[Dr| = D + o is agents’ unconditional prior belief when the displacement is

announced. For the bubble to burst, we need w;_; + w;_; to eventually turn negative.
If we consider a one-off positive shock, such that E;,_;[Dy] = E;;[Dy] > Eg[Dr] for all

t > 1, equation (B.19) makes clear that as long as the economy is in a unstable region and

Zi:ll > 1, PET agents continue to extract positive information from prices, and therefore

become increasingly optimistic.®” In other words, when the economy is in an unstable
region, the lagged response of uninformed agents always raises prices by more than what
uninformed agents would expect from changes in confidence alone. On the other hand, this
is no longer the case once the economy returns to a stable region and the feedback between
outcomes and beliefs runs out of steam. At the peak of the bubble uninformed agents’
beliefs vastly exceed fundamentals, and the term in (Ey,_;[Dr] — E¢[Dr|) dominates in

determining the sign of the news that uninformed agents extract from past prices in

(B.19). Once the economy returns into a stable region and bi’l < 1, PET agents expect

at—1

37Notice that the last term in &_; — c;—; > 0, as uninformed traders under-estimate the aggregate
risk bearing capacity following a displacement.
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higher price rises than the ones they observe. As their beliefs are disappointed, they

become more pessimistic (4;_1 + w1 < 0) and the bubble bursts.

B.4 Constant return extrapolation

In our theory, return extrapolation is micro-founded via misspecified higher order beliefs.
In this section, we entertain an alternative possibility, whereby uninformed traders always
mistakenly attribute a fixed fraction of non-fundamental price movements to fundamental
price movements. We show that in normal times, PET provides a micro-foundation for
this type of mistake, which leads to constant return extrapolation. Instead, following
a displacement, PET provides an additional amplification channel, as it induces time-

varying return extrapolation.

B.4.1 Inference without Higher Order Beliefs

To model the case where uninformed investors always attribute a fixed fraction of non-
fundamental price movements to fundamental price movements, we assume that unin-

formed traders believe that price changes are captured by the following mapping:

A.Pt_l = Xu ﬂ/t—l + X Zt—l <B20)
—— N——
new information noise

where ¢;_1 is i.i.d. and normally distributed, according to ¢;_; ~ N (0, ¢?). In other words,
uninformed traders use a very simple heuristic to guide their trading: they attribute

any price movement to new information and noise, in constant proportions. This way,
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uninformed traders do not have to think carefully about other investors’ behavior.
Under these beliefs, uninformed traders think they can infer the following noisy signal

from prices:

2
1 L i 1 L
ahf:ABA—XﬁFV$N(A34<X>(ﬁ) (B.21)

u Xu u u

Bayesian updating then leads to the following change in beliefs:

2 2

X0 AP,_, K

AEy [ Dy| = u_u = —AP,_ B.22
el Dr] (ﬁﬁ+ﬁ#> Xa (B.22)

where the coefficient x is the Kalman gain. This leads to a similar type of return extrap-
olation as in our preferred specification in the main text, but the degree of extrapolation
is now given by #/y,. Unless o,, 0., X, or X, are time-varying, the degree of extrapolation
that we obtain in this way is always constant. For it to be time varying, one would need
to offer a micro-foundation as to why any of these parameters would change over time,

which is precisely what our framework does via higher-order beliefs.

B.4.2 Bubbles and Crashes

To see whether bubbles and crashes can still arise in this setting, we only need to verify
whether we can still get time-variation in informed traders’ informational edge. To do so,
we know that informed traders’ conditional variance is unchanged relative to the model in
the main text, and we are left to compute the conditional variance of uninformed trader.

As in Online Appendix G, we assume that agents learn the realization of the noise
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t.38

shock after two periods, to preserve the stationarity of the environmen The conditional

variance of uninformed traders is then given by:

VU = :“iO’L2 + <1f252> 05 <B23)

We can then define the informational edge in exactly in the same way (notice that the
edge is greater now since uninformed traders are more uncertain given the noise in their

inference):

= (1 iﬁ ¢> <V1 + (tZU+ TO)_1> (B:24)

which shows that informed traders’ edge is still time-varying following a displacement.
Even though the confidence of uninformed traders is constant, the confidence of informed
traders is initially diluted and then gradually rises over time. Therefore, even with con-
stant extrapolation it is possible for informed traders’ edge to fall enough to temporarily

shift the economy to a non-stationary region, leading to bubbles and endogenous crashes.

B.4.3 Further Discussion

There are three points worth noticing in light of this discussion.

First, while time-varying return extrapolation is not strictly necessary to achieve mo-
mentum in normal times, and bubbles and crashes following a displacement, it yields
additional predictions relative to the case with constant return extrapolation. For exam-

ple, time-varying return extrapolation offers an additional amplification channel during

38The exact micro-foundation of constant return extrapolation is not too important for this discussion,
which goes through even when prices are fully revealing.
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positive bubble, which turns into a dampening channel for negative bubbles. This allows
us to speak to the empirical evidence on the asymmetry of positive and negative bubbles.
Instead, constant extrapolation leads to negative bubbles that are even more amplified
than their positive counterparts, as further discussed in Section 2.5 of the paper.

Second, in terms of micro-foundations, our framework allows us to account for the fact
that traders need not use the same type of belief updating process when faced with new
and novel situations. Our micro-foundation of return extrapolation has a very intuitive
reduced form: when faced with normal and familiar circumstances, PET trader’s belief
updating process is constant, and they instead updated their belief updating process
following a displacement.

Third, one of the key contributions of our paper is the modeling of normal times and
displacement shocks in distinct ways, and to show how displacement shocks interact with
extrapolative beliefs in a potentially explosive way. From this point of view, many of our
key results are robust to alternative micro-foundations of belief formation, including a
more mechanical form of constant return extrapolation. We explore more general forms
of model misspecification in Bastianello and Fontanier (2024), and we refer the reader to

that paper for a more detailed discussion.

C Trading Behavior

We start this section with a detailed discussion of predictions on investors’ trading be-

havior.
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C.1 Trading Behavior in Normal Times

Proposition 3 in the main text showed that as long as informed traders’ edge is high
enough, PET traders are on average contrarian with respect to short-run returns in normal
times. In this section we clarify two further points: first, while PET traders are indeed
contrarian with respect to short-run returns, they are always momentum with respect to
long-run returns. Second, while the covariance between changes in holdings and changes
in prices captures whether PET traders are contrarian or momentum on average, we can
also study PET agents’ trading behavior with respect to a given sequence of shocks, such

as, for example, an impulse response function.

C.1.1 Trading Behavior: Short-run Returns vs. Long-run Returns

The left panel of Figure 5 illustrates graphically the result from Proposition 3: summariz-
ing data from 10,000 simulations, we see that following a price increase, PET traders are
more likely to decrease their holdings, while following a price fall, PET traders are more
likely to increase their holdings.? In other words, PET traders are on average contrarian
with respect to short-run returns. This is in contrast to the right panel of Figure 5, where
the pattern reverses when we look at longer horizon returns: if the price over the last 10
periods has increased, PET traders are more likely to decrease their holdings, and if the
price over the last 10 periods decreased, PET traders are more likely to increase their
holdings. In other words, PET traders are on average momentum traders with respect to

long-run returns (Bastianello and Fontanier 2024).

39Jin and Peng (2024) interpret this as traders being subject to the disposition effect, and to doubling
down in buying (Barber and Odean 2013).
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Figure 5: PET Investors’ Trading Behavior in Normal Times. This figure is obtained from
10,000 simulations of our model over different paths of shocks. The left panel captures the fraction of
times PET uninformed traders increase and decrease their positions following a one period price rise and
fall, respectively. The fact that PET traders predominantly buy when the price rises, and sell when the
price falls shows how PET investors are on average contrarian with respect to short-run returns. The
right panel captures the fraction of times PET uninformed traders increase and decrease their holdings
following a price rise and fall over the last 10 periods. The fact that over these longer horizons PET
traders predominantly buy when the price falls, and sell when the price rises shows how PET investors
are on average momentum with respect to long-run returns.
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To understand what short-run contrarian and long-run momentum trading behavior
might look like, Figure 6 shows equilibrium prices and holdings for a simulated price paths.
Both plots make clear that PET traders are indeed contrarian with respect to short-run
returns: period-by-period, PET traders tend to sell when the price goes up, and buy
when the price goes down. However, PET traders are momentum with respect to long-
run returns: their holdings are positively correlated with prices at lower frequencies.

These results allow us to speak to the puzzling empirical fact that retail investors
appear to be contrarian. Our analysis makes clear how it is important to specify the
horizon under consideration when making such statements. Importantly, the empirical
evidence captures investors’ trading behavior with respect to short-run returns (over a

week or a month in Kogan et al. 2023 and Luo et al. (2023), respectively), and this does
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Figure 6: Equilibrium Price and Trading Behavior. This figure simulates a path of equilibrium
prices and holdings when traders are subject to partial equilibrium thinking. It illustrates how PET
traders are contrarian with respect to short-run returns (period-by-period, their holdings move in the
opposite direction to prices), but momentum with respect to long-run returns (over lower frequencies,
their holdings positively co-move with prices).

Price
Asset Demands

——PET Price — Asset Demands
0 10 20 30 40 50 60 70 80 90 100

Time

not preclude the same retail investors from being momentum with respect to long-run

returns (e.g. Barberis et al. 2018, Jin and Peng 2024).

C.1.2 Impulse Response Functions and Specific Sequence of Shocks

While PET is not the only model of extrapolative beliefs to generate contrarian trading
behavior in normal times, the connection between extrapolative beliefs and investors’ con-
trarian trading behavior with respect to short-run returns has not received much attention

in theory models, with the exception of Jin and Peng (2024). Instead, the evidence of
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retail traders’ contrarian behavior and their tendency to have extrapolative beliefs has
often been thought of as a puzzle. There are two sources of misunderstanding that may
have contributed to this puzzle. The first one is the lack of distinction between short-
run and long-run returns that we discussed in the previous section, and which is studied
extensively in Jin and Peng (2024). The second source of misunderstanding stems from
a potentially wrong interpretation of traders’ impulse response function, which we now
turn to.

Figure 7 shows the impulse response functions from a one-off shock to fundamentals.
If we focus on the covariance between changes in holdings and changes in prices that
arises from this impulse response function, we may jump to the conclusion that while
PET traders are indeed contrarian in the first period when news arrives, they are mostly
momentum thereafter, increasing their holdings while the price is still rising. In other
words, given this sequence of shocks, PET traders appear to be momentum even with
respect to short-run returns (see Section C.3.1 for a formal proof).

However, the intuition obtained from interpreting the impulse response function in
this way is incomplete because it only looks at how trading behavior evolves with re-
spect to a single one-off shock. In normal times new information arrives in every period,
meaning that investors’ trading behavior is determined by the constant interaction of the
contemporaneous response to new shocks and the evolving response to past shocks. This
is what is captured by the covariance between changes in prices and changes in holdings
in Proposition 3. On other words, while the impulse response function allows us to under-

stand whether PET traders are momentum or contrarian for a given sequence of shocks,
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Figure 7: Impulse Response Function from a One-off Shock to Fundamentals. This figure
plots the equilibrium price and holdings following a one-off shock to fundamentals. Given this sequence
of shocks, PET traders appear to be momentum even with respect to short-run returns.
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the unconditional covariance between changes in prices and changes in holdings allows us
to understand whether PET investors are contrarian or momentum traders on average

over all sequences of shocks.

C.2 Trading Behavior during Bubble and Crashes

Next, we study the trading behavior of PET traders following a displacement, and we
show how it is strikingly different relative to normal times. Proposition 3 suggests that
PET traders are likely momentum during bubbles and crashes, as displacements lower
the informational edge below the threshold needed to ensure contrarian trading behavior.
Section C.3.2 proves this more formally.

Figure 8 simulates the price path of prices and holdings following a displacement, and
we see that PET traders are indeed momentum even with respect to short-run returns
during bubble and crashes. Moreover, Figure 9 shows the results from 10,000 such simula-
tions, and shows how this momentum trading behavior with respect to short-run returns
is true on average, and not just for a specific sequence of shocks.

This is a unique feature of our model: by drawing a distinction between normal times
shocks and displacement shocks, we are able to explain why investors’ average trading
behavior differs with respect to normal stocks and bubbly stocks, therefore offering a first

theoretical explanation to the puzzling findings documented in Kogan et al. (2023).
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Figure 8: Equilibrium Price and Trading Behavior following a Displacement. This figure
simulates a path of equilibrium prices and holdings following a displacement. It illustrates how PET
traders are momentum with respect to short-run returns during bubble and crashes. The light blue line
depicts the price in the rational counterfactual.
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Figure 9: PET traders’ momentum trading behavior with respect to both short-run and
long-run returns following a displacement.
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C.3 Proofs and Derivations from this Section
C.3.1 Impulse Response Function Covariance

In this section we formally prove that the covariance between changes in holdings and
changes in prices over the impulse response function from a one-off fundamental shock is
positive, even with respect to short-run returns.

Starting from the equilibrium dynamics of price changes:

b < (b)
APt = auy + aAPt_l = Z <a> aUs—; (Cl)

1=0

Therefore, the path of equilibrium prices and asset demands following a one-off shock to

fundamentals in period t can be written as:

b\" b\"
Apt+n = () auy — APt = <> AQUt—n (C2)
a a
1
AXt X 5AB,1 — Apt (CB)
We can then compute the relevant covariance:
1
Cov(AXy,, AP,) gCOU(APt,l, AP) —Var(AP,) (C4)

- CllCOU ((Z)naut_n, (Z)n_l aut_n) — (2) na%g (C.5)
(Z)Qn 1 a’o’ — <2>2” a’o? (C.6)
(2) a(1— b)o? > 0 (.7)
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C.3.2 Bubbles and Crashes: Momentum Trading Behavior

In the main text, we argued that uninformed PET traders are momentum during bubble
and crashes by showing that the normal times covariance between changes in prices and
changes in holdings turns positive once the informational edge is low enough. In this
section, we show more formally that the covariance between changes in holdings and
changes in prices is indeed positive following a displacement.

Starting from the covariance during a displacement, we have that:

AEy, — AP, Eviq — P
Cov(AXy,, AP) = Cov (Utt APt> — Cov (M(VW — V1), APt>

AVy, AVyaVy,
(C.8)
1 Vo — Vyia
= AEy, — AP, AP) — —————2— Eyi1 — Py, AP,
AVUJCOU( Uit 4 AP) Ay Vs Cov (Eyy—1 — Py, AP;)

(C.9)

where the second equality follows because the variances are all deterministic. We can now
analyze both terms on this expression, in turn. Starting from the first term, and using

the expression for uninformed traders’ beliefs following a displacement:

1 1 ~
AByy — AP, = — AP,y — — (Poyy—a — Pia) — AP, (C.10)

ai—1 A—1

The covariance with the current change in prices is then:
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1

Qg1

CO’U(AEUﬂf — APt, Apt) = CO’U(APt,b APt) — V&T(Apt)

1

A1

COU(Pt_Ilt_Q — Pt,Q, APt) (Cll)

Now notice that:
(pt—1|t—2 — PH) = (Adtfl]El,tfﬂDT] + AgtfleU,tfﬂDT]) — AG (C.12)

In this expression, only one term is stochastic: E rt—2[Dr|. All other terms are determin-
istic since (in the misspecified model) U beliefs are constant at the prior. We are thus left

with:

Cov(AEy, — AP, AP,) — dlCov(APtl, AP) = Var(AP,)
t—1
A

ay—1

Cov(Ep,_o[Dy], AP,) (C.13)

To keep everything in term of prices, one can also use the relation between the observed

price and the inferred belief of I:

Pt — a/t]ELt[DT] + Bt]EU,t [DT] - ét (014)

which gives:

P9+ ¢Co — gt—QEU,t—Z [Dr]

E;io[Dr] = -
t—2

(C.15)
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Once again, most terms are deterministic so the covariance becomes:

1
CO’U(AEUﬂf — APt, Apt) = a CO’U(APt,b APt) — V&T(Apt)
t—1
Ady—
— =2l Cou(Py, AP) (C.16)
At—10¢—2

Turning now to the second factor, and using (C.15) together with Ey;_; = E17t,2, we

can write this as:

A¢—2

P,_
Cov(Eyy—y — Py, AP,) = Cov ( T AR) (C.17)

Substituting (C.16) and (C.17) back into (C.9), we have that the covariance between

changing in holdings following a displacement is given by:

1 1
Cov(AXys, AP,) = ne ((EICOU(APtl, AP,) —Var(AP,)
t \ Qi

~ (f _ ! ) Cov(P,_y, AP,) + <M> Cov ({3” - Ptl,APt>> (C.18)

at—2 Qi1 VU,tfl a¢—2

Therefore, we see that the covariance following a displacement has two extra terms
relative to the corresponding covariance in normal times (which is captured by the first

row of the above expression):

Vo — Vyia
Ay—10¢—2 VU,t—l

Cov (EU,t—l - f)t—la APt> (Clg)

The first extra term captures the fact that following a displacement the degree of ex-
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trapolation changes over time, while the second term captures the fact that traders’ risk
bearing capacity increases as they learn more about the displacement over time.
These two terms, however, are second-order for small 7, relative to the terms identified

in normal times. To see this, remember that:

=1+ = (C.20)

while

= o Vi + (10)7!

1= C.21

G-t (1—¢ V4 ((t = D1y + 70) (C.21)
so that:

~ ~ 1 1

G1—Go——=0 = — — < > 0 (C.22)

7s—0 Ay_2 Ay_q Ts—0

Similarly for the variance terms, we have:

Voe=Vy+(t—1)7+7)7" (C.23)
so that:
Vi —=Vyig ——0 (C.24)
Ts—0

At the same time, these second-order coefficients multiply covariances that are bounded.

To see this, notice that when 7, — 0, the price converges to:

Af)t = Q¢ (Ut + wt) + bt (ﬂt—l + U~)t_1) -+ (Pt|t—1 - .Pt_l) (C25)
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with:

By —FH1—>0 (C.26)
Ts—0

while a, and b, are bounded by 1. As such, the terms Cov(P,_,, AP,) and Cov (P—_ — P, AH)

are bounded above and the supplementary terms relative to the normal times covariance

are thus indeed second-order. O

D Expected Returns

In this section we study the properties of expected returns, and relate them to empirical
findings that have been documented in the literature. To do so, we follow prior work and

define expected returns additively:°
Ei[Rr] = Ey[Dr] — P, (D.1)

Using this definition and the expression for equilibrium price dynamics in (9), we compute
uninformed and informed traders’ expected returns, average subjective expected returns
(weighted by the relative size of each group of traders), and objective expected returns as

follows:

]EUt[RT] = a(EUt[DT] — E[t[DT]) +c (D2)

E[t[RT] = —(1 — CL)(EUt[DT] — E[t[DT]) +c (DS)

4ONotice that we define expected returns with respect to terminal dividends (rather than in terms of
next period payoffs) because these are the expectations that matter to the investors in our model.
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E/[Rr] = (a — ¢)(Ep[Dr] — En[Dr]) + ¢ (D.4)

RT = —(1 - a)(EUt[DT] — Elt[DT]) +c (D5)

where a is defined in the main text, and a — ¢ > 0 given that informed traders always

have an edge relative to uninformed traders (7; > 7).

D.1 Expected Returns’ Loadings on Lagged Returns

In this section we explore how uninformed traders’ expected returns load on lagged re-

turns. To do so, we compute the following covariance:

Cov(AEw[Rr]|, AP,_1) = Cov <<1 +

L B g e

b h—1 2
= () — L 520 (D.8)
]_ _

b
5 APt_l, A.Pt_h> — CO’U (A.Pt, A.Pt_h) (DG)

Given this expression, we can then look at how the relative loadings on past lagged returns

change with the informational edge:

CO’U(AEUt[RT], APt—h) o é - 1 (D 9)
COU(AEUt[RT], APt—h—l) a C ’

What this expression shows is that when informed traders’ edge is lower, uninformed
agents appear as if they extrapolate relatively more recent returns rather than returns in

the more distant past. This is a distinctive and testable implication of our model.
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D.2 Cyeclicality of Expected and Realized Returns

To study whether expected and realized returns are pro- or counter-cyclical, we look at
how they covary with the price dividend ratio. As with returns, we define the price

dividend ratio additively:

P—-—D= Pt - El,t[DT] = (1 - a) (]EUt[DT] - E[t[DT]) +c (DlO)

Using the definition of expected and realized returns in equations (D.2), (D.3), (D.4), and

(D.5), we obtain the following simple covariances:

Cov(Eyy[Rr], P — D) = a(1 — a)Var(Ey,[Dyr] — Er,[Dy]) > 0 (D.11)
Cov(Ep[Ry], P — D) = —(1 — a)*Var(Ey[Dr] — En[Dr]) < 0 (D.12)
Cov(E([Rr], P — D) = (a — ¢)(1 — a)Var(Ey[Dr] — Ex[Dr]) > 0 (D.13)
Cov(Ry, P — D) = —(1 — a)*Var(Ey[Dr] — Ep[Dr]) < 0 (D.14)

These inequalities suggest that uninformed traders’ expected returns, and average sub-
jective expected returns are pro-cyclical, while informed trader’s expected returns and
objective expected returns are counter-cyclical. This is consistent with empirical evidence
in Greenwood and Nagel (2009), Bastianello (2024) and Nagel and Xu (2023), who show
that objective expected returns are counter-cyclical, the (subjective) expected returns of

more uninformed traders are pro-cyclical, and the (subjective) expected returns of more
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informed traders tend to be counter-cyclical.*!

Next, we relate to the empirical evidence in Nagel and Xu (2023) that objective ex-
pected returns co-move more with business cycle variables than average subjective ex-
pected returns. Given the expressions in (D.13) and (D.14), for this to be the case we

need:

|Cov(E,[Ry], P—D)| < |Cov(Rp, P—D)| <= (a—¢) < (1—a) <= a < 1?25 (D.15)

Re-writing this in terms of informed traders’ edge, we find that objective expected returns
co-move with business cycle variables more than average subjective expected returns do
only when informed traders’ edge is low enough:

I+¢

¢ 1—¢
T+¢ 2 <

1+ ¢

—= (< 1 (D.16)

Notice that this condition is weaker than the condition required for stability, meaning
that it can indeed be satisfied in normal times. Finally, when informed traders’ edge is

lower, this condition is more easily satisfied.*?

4'Notice that the pro-cyclicality of subjective return expectations is not inconsistent with uninformed
traders’ contrarian behavior with respect to short-run returns. These relationships are focused on the
covariance of subjective expected returns with different quantities: the price-dividend ratio is effectively
a measure of how over/undervalued the asset is at a given point in time (see equation (D.10)), while
lagged returns capture whether prices are rising or falling.

“2Intuitively, if we didn’t have heterogeneous agents, and instead had a biased representative agent
(such that a = 0), then subjective expected returns would be acyclical, and objective expected returns
would be strongly counter-cyclical. As we increase a, the expected returns of uninformed traders become
(more) pro-cyclical, and objective expected returns become less counter-cyclical. Once we increase a
enough, average subjective expected returns become more cyclical than objective expected returns are
counter-cyclical. In the limit where a approaches 1, biased agents become unimportant for equilibrium
prices, and objective expected returns thus become acyclical.
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E Speculative Motives

To model speculative motives, we let agents have the following asset demand function

conditional on their beliefs:

Eis[Hp] — P
Xt = — E.1
AV (M .
where the expected next period payoff is given by:
My = Bl + (1= B8)Dy (E.2)

and simply reflects that with probability [ the asset is alive next period and worth P, 1,
and with probability (1 — ) the asset dies and pays out its terminal dividend D;.

Since agents are forecasting prices, which are endogenous outcomes, they now need
to forecast other agents’ future beliefs, which requires us to specify agents’ higher order
beliefs. While partial equilibrium thinking helps to pin down uninformed agents’ higher
order beliefs (they simply assume that all agents trade on their private information alone,
and that this is common knowledge), it allows for more flexibility about informed agents’
higher order beliefs.

We consider two cases. In Section E.1 we let informed agents be “PET-aware,” so that
they perfectly understand uninformed agents’ biased beliefs. In Section E.2, we consider
a case where informed agents are “PET-unaware” and mistakenly believe that all other
agents are rational, and that uninformed agents extract the right information from prices.

This lines up with the distinction in practical asset management between investors who
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concentrate on the gap between market prices and their estimates of fundamentals, and

those who also think about behavioral biases in the market.

E.1 “PET-aware” Speculation

In solving the model, we proceed in the same three steps we used in the baseline model.
First, we solve for the true price function which generates the prices agents observe.
Second, we specify the mapping that uninformed agents use to extract information from
prices. Third, we solve the model forward, starting from the steady state in normal times.
The one key difference to our baseline setup is that since all agents are now forecasting an
endogenous outcome, we now need to solve for the first two steps by backwards induction.
To do so, we use the new steady state after the uncertainty surrounding the displacement

has been resolved as our terminal point.

Step 1: True Market Clearing Price Function. To determine the true market
clearing condition which determines the prices agents observe, we know that in period ¢
all informed agent trade on the whole history of signals they have received up until that
date ({u;}%—o, {s;}j=1) and all uninformed agents trade on the information they have

learnt from past prices.

We define D; = D + Z;Zl u; and W, = trTim Lo + tTTj'rTO Z§:1 S to be informed agents’

period ¢ belief of normal times shocks and of the displacement respectively, and D, and

W, are uninformed agents’ beliefs about these quantities.
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We can then guess that the true price function takes the following form:

P, = A(D,+W,) + Bt(f)t—l + Wt—l) - K (E.3)

where D;,_; + W,_; is the information that uninformed agents extract from past prices,
and A;, By and K; are time-varying and deterministic coefficients.
To verify our guess, notice that if informed agents are aware of uninformed agents’

bias, their beliefs about next period payoff are given by:

Eri[Mi] = (1= B+ BAa) (Di+W,) +8Bia
Y
Er¢[Diy1+Wit1]

Pt—ét(D“‘ﬂo)‘i‘f(t
Ay

El,t[ﬁt-i-VNVt}

> _ﬁKt—H

(E4)

Ts

Viee] =V, [5’4”1“”1 * ﬁAtJrl(t—l—l)—T—l-T
s 0

@t ern) +(1— ﬁ)w] (E5)

= (BAr1) o + <6At+1 <TS)> ()"

(t + 1)7'5 + T0
Ts

+ (1 _/B+6At+l ((t—’—]_)TS—f—TO

2
)) (tTs+70) " = V4

(E.6)

where the variance term captures how the uncertain components of expected profits in
equation E.2 are (i) the future dividend component u,,; ; (ii) the signal informed agents

receive in period t + 1, s;41 = w + €11; and (iii) the displacement shock w.
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Turning to uninformed agents’ beliefs:

Ey (] = (1 -8+ BA1)(Diy + Wi1) + BBisa (D + po) — BKii (E.7)

27T, 4 Ts
w
(t+1)7s + 70 (t+ 1)1 + 70

Vo] =V lﬂlet+1 (Ut+1 + up + (€141 + 6t)> + (1= B)(uy +w)

:(BAH-l)ZJg +(1 -8+ ﬁAt+1>203

27T, 2 1
(75"‘1)75> ((t = 1)7s + 7o)

9 Tsﬁlet+1
(t+1)7s + 70

+ (1 —B+5At+1

)2 (r) ™ = Vi,

(E.8)

where the first equality captures that in period ¢ uninformed traders are uncertain about
Ug, Urr1, €, €41 and w, and the last equality simply simplifies notation to highlight that
Vs is deterministic and time-varying.

Given these beliefs, the resulting market clearing price function is given by:

dVyi+ (1 —¢)Vy,

n ( (1-9)Vr,
dVy+ (1 —0)V,

Pt = ( ¢VU’t ) El,t[Ht+1]

) Ev e[ 14]

B AZV 1, Vi,
oVyi+ (1 =)V,

(E.9)

Since (E.4), (E.6), (E.7) and (E.8) show that Ej;[Il;4] is linear in (D; + W;) and

(ﬁt_l + Wt_l), Ey¢[I1444] is linear in (ﬁt_l + VNVt_l), and that V[II,;;] and V[II;;4] are
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deterministic, we see that the true price function does indeed take the form in (E.3).

Substituting (E.4), (E.6), (E.7) and (E.8) into (E.9), and matching coefficients, yields:

e
Ay = Lt - (1 =B+ BAw1) (E.10)
7 (1= %) + 20

B; = Yo (1— B+ BAn) (E.11)

[
Vit By S ~
K, = * <5Kt+1 + 8= (= Bu(D + o) + m))
o3 By (1-9)
Vi (1 —B Atl) + Vue Ay
1-¢
Vue

% (1 . ﬁ%) + % (_BBH-I(D + NO) + BKH—I)

AZ
+ (E.12)
Byt 1—
Vi),t (1 —B AJ; ) (VUf)

These expressions give recursive equations for the coefficients which determine equi-
librium prices at each point in time. To solve for this mapping, we then need to solve the
model by backward induction. We can do this by using the new steady state after the
uncertainty generated by the displacement is resolved as the end point. Specifically, the

new steady state is given by:

Kol
A= i | (1- B+ BA) (E.13)
# (1-8%) + 72
1-¢
B = Yu (1— 8+ A" (E.14)

G005
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@ /
K’ (1_2,) - (5K’+6§/(—B’(D+uo)+i{’)>

AZ

AR

+ (E.15)

where A’, B’ and K’ are the coefficients of the mapping PET agents use to extract
information from prices in the new steady state, and which we solve for in (E.27), (E.28)
and (E.29) in the next section respectively. Moreover, V; and V}; are the variances of

informed and uninformed agents in the new steady state when uncertainty is resolved:

Vj = lim Vp, = (BA)? o2 (E.16)
[ = lim Vi, = (BA)20% + (1 - B+ pA)%0? (B.17)

Using this steady state as our end point, we can then solve for the true price function

which generates the prices agents observe by backward induction.

Step 2: Mapping to Infer Information from Prices. As in the baseline model
without speculation, PET agents think that in period ¢ informed agents trade on the
information they received, {u;}i_;, {s;}’—;, and that uninformed agents only trade on

their prior beliefs. Therefore, we can guess that their perceived equilibrium price function
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takes the following form:

P, = At(ﬁt + Wt) + Bt(D + o) — K (E.18)

where flt, B, and K, are time-varying and deterministic coefficients.
To verify that this is the price function which would arise in equilibrium if agents
traded on their own private information alone, notice that, given this price function,

informed agents’ beliefs would take the following form:

Eri[Me] =Ep[B (At-&-l(f)t—kl + Wiit) + Bea (D + o) — f(t+1> + (1= 8)(Ds + )]

=(1 = B+ BAw1) (D + Wy) + BBrr (D + po) — BKii1 (E.19)

TS
(t+1)7s + 70

= <5At+l)2 o+ <5let+1 (%)) ()"

T
(t+ 1)1 + 70

Vi) =Vi, lﬁfitﬂﬁtﬂ + BA ( ) (@+&q1) + (1= 5)@]

2
+ <]_ — 6 + /BAtJ’_l ( >> (th + 7'0)_1 = \717,5 (E20)

where WN/M is time-varying and deterministic. Turning to PET agents’ beliefs of other

uninformed agents’ beliefs:

IE-:U,t[HtJrl] =(1-08+ BA + 5Bt+1)(D + po) — BK 1 (E.21)
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Ts

vU,t jay :Vl,t [BAt+l(at+l + ) + 5/~1t+1 <(t—|—1)7'+7
s 0

> (260 + & + &41) + (1 — B) (i + w)}

2
~ 2 ~ 2 ~ Ts —
= (BAva) ot + (1= 5+ BAu) ai+2(6At+1 ((t+1)75+70>> ()"

2
~ Ts _ ~
-+ <1 - 5 + QﬁAt-i-l (MW))) (7’0) 1 = VU,t (E22)

where Vi, is time-varying and deterministic.*?

Given these beliefs, the resulting market clearing price function is given by:

_ Vi, -
= <¢VU¢ + (1 - ¢)V1,t> Ereller)
N ( (=9 Vi
oV + (1 —¢)Vr,

) Eu [Tl

L AZVLVy,
dVyr+ (1 —9)V,

(E.23)

Since (E.19), (E.20), (E.21) and (E.22) show that E;,[IT,;,] is linear in (D, + W,) and
(D + po), that Ey[IT,14] is linear in (D + j0) and that V1 [I41] and Vi [IT44] are
deterministic, we see that given PET agents’ beliefs about other agents, the price function

which generates the prices they observe does indeed take the form in (E.18). Substituting

(E.19), (E.20), (E.21) and (E.22) into (E.23), and matching coefficients yields:

¢
\%;

A, = ((f’+1—¢> (1= B+ BA1) (E.24)

\x Vo

43In solving the model we assume that partial equilibrium thinkers believe other uninformed traders
think past fundamental shocks simply did not realize - since they did not receive private information
about them, they think they did not happen. Our results are robust to alternative assumptions about
traders’ higher order beliefs. For example, we could just as easily have assumed that PET traders believe
that other uninformed traders think no news ever arrives, and having them trade on fixed prior beliefs
even following a displacement.
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) 1-¢
Bt = (m) BBt+l -+ ((ﬁvU,tl_qs) (1 - ﬁ + ﬂAt+l + 5Bt+1) (E25)

e T Vo e T Vo
¢ 1-¢
~ v ~ v ~ AZ
lﬂ=(¢%&%>ﬁ&ﬂ+(qu1¢)wﬂﬂ—q5+k¢ (E-26)
et Vo 7t Vo 7t Vo

These expressions give recursive equations for the coefficients with determine equilib-
rium prices at each point in time. Therefore, to solve for this mapping, we need to solve
the model by backward induction. We can do this by using the new steady state after the
uncertainty generated by the displacement is resolved. Specifically, uninformed agents

think that the new steady state has:

o
~ v/ ~
A= | (1-F+p4) (E.27)
Vi Vy
2 1-¢
~ Vl - Vl 5 B
B=\g |+ (W) (1-B+BA +5B) (E.28)
VitV v, TV
% 1—¢
3 v ” v - AZ
K= ¢ﬁ%¢ﬁﬁ+<¢j%J5K—¢+y¢ (E.29)
Vi Vo v, TV, v

where A’, B' and K’ are PET agents’ beliefs of the coefficients of the price function in the
new steady state after the uncertainty associated with the displacement is resolved, and
\7’1 and XN"U are PET agents’ beliefs of the variance of informed and uninformed agents in

the new steady state when uncertainty is resolved:

Vi = lim V1, = (BAY0? (E.30)
V= lim Vi, = (BA) 0% + (1 = B+ BAY0% + (1= B)*(r0) ! (E.31)
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Using this steady state as our end point, we can then solve for the mapping uninformed
agents use to extract information from prices by backward induction.

Given this mapping, uninformed agents extract the following information from prices:

Py — Bt—l(D + po) + f{t—l

Dy +Wiy = 1
t—1

(E.32)

Or, given their information set in period ¢, they extract the following new information

from the unexpected price change they observe in period ¢ — 1:

B B 1
Up—y + Wy = 7 (P—1 — Eyy1[P—1]) (E.33)

t—1

where @;_1 = W,_1—W,_,. This verifies our claim in the text that PET agents extrapolate

unexpected price changes even when we allow for speculative motives.

Step 3: Solving the Model Recursively. We solve for the normal times steady state
before the displacement is announced by solving the system of equations in (E.27), (E.28),

(E.29) and (E.13), (E.14), (E.15), using the following normal times variances:

V; =(BA)*02 (E.34)
Vo =(8A)*0; + (1 - B+ pA)%0; (E.35)
Vi =(BA)%02 (E.36)
Vy =(8A)°0; + (1 - B+ BA)*0; (E.37)
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Starting from the normal times steady state, we can then simulate the equilibrium

path of our economy forward for a given set of signals.

E.2 “PET-—unaware” Speculation - Mistakenly Rational

If informed agents are not omniscient, and instead mistakenly believe that the world is
rational, and that uninformed agents are able to recover the correct information form

prices, then their posterior beliefs in (E.4) should be replaced by:

Er 1] = (1 =8+ BAu1)(Di+Wy) + BBia(Dy + W) — BKi1 - (E.38)

The posterior variance is identical since, as in the “PET—aware” case, Informed agents
are certain about the beliefs that Uninformed agents will have next period.

Following the same steps as in Section E.1 above, it follows that the equilibrium price

becomes:
Pt — At(Dt + Wt) + Bt(ﬁtfl + Wtfl) - Kt (E39)
where:
Vi
A= | 55 | 1= B+ BAw + BBiia) (E.40)
Vit + Vu,e
1-¢
\% t 't
By = ) = 1—¢ (1 -p+ ﬁAt-&-l) (E41)
Vit + Vu,
) 1-¢
t t >, 2 % AZ
K, = % BK 11+ (M) (_BBt+1(D + o) + Kt+1) + % 19
Ve T Vo Vi T Vo Ve T Vou
(E.42)
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Since the mapping used by PET agents to extract information from prices is unchanged
relative to the one in Section E.1, we can use this alternative price function to simulate
the path of equilibrium prices and beliefs by following the same steps as in Section E.1.
The results of these simulation for prices, beliefs, trading volume and asset demand are

presented in Figure 10.

Figure 10: Bubbles and crashes with “PET-aware” and “PET-unaware” speculators. Start-
ing from a normal times steady state, a displacement w ~ N (uo, 7y 1Y is announced in period t = 0.
Informed agents then receive a signal s; = w + € in each period, where ¢; > 0 and ¢, = 0 V¢t > 1.
This figure compares the path of equilibrium prices and trading volume under rational expectations,
partial equilibrium thinking, “PET-aware” speculation, and “PET-unaware” speculation. “PET-aware”
speculation amplifies the bubble relative to the case with no speculative motives, while “PET-unaware”
speculation arbitrages the bubble away.

(a) Price (b) Trading volume
9 T T T 0.5 7 T T T
—REE —REE
o —PET ] il —PET
s —PET—aware || 04 —PET—aware
—PET—unaware 05 —PET —unaware | |

Price

Time Time

F Dynamic Trading

F.1 Setup

In this section we consider the case where informed traders solve the full inter-temporal

maximization problem, where they maximize CARA utility over terminal wealth. To do
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so, we make our setup as close as possible to He and Wang (1995). Our traders solve a
portfolio choice problem between a risky and a riskless asset. The riskless asset is in fixed
elastic supply, and we let the risk-free rate be zero. The risky asset is in fixed supply
Z, and pays off a terminal dividend of v in period 7'+ 1. Turning to the information
structure, a fraction ¢ of traders are informed, and receive a signal s, = v + ¢ with
e ~" N(0,0?). The remaining fraction 1 — ¢ of traders are instead uninformed, and
learn information from past prices while engaging in partial equilibrium thinking.

In what follows, we solve the model in two ways. First, we solve the model by assum-
ing that all traders have mean-variance utility over the fundamental value of the asset.
Second, we consider the case where informed traders are sophisticated, and solve the full
intertemporal maximization problem while also perfectly understanding other traders’

objective function and beliefs.*4

F.2 Mean-variance Utility

As a benchmark, we consider the case where all traders have mean-variance utility:

max X (Buale] - P) - ;AXﬁtVi,t 41} (F.1)

Xt

where A is the coefficient of absolute risk aversion. Traders’ asset demand functions are

given by:

v Byl - B

Wt — T axr 1
AVi,t ['U]

44We continue to assume that uninformed traders have mean-variance utility over the fundamental

value of the asset, and believe that all other traders have mean-variance utility too. This assumption can
easily be relaxed, and we maintain it here for simplicity.

(F.2)
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As in the baseline framework, we first solve for the true price function, given agents’
beliefs. Next, we solve for the price function which uninformed traders think is generating
the price change they observe, both for the rational and for the PET case. Finally, we

solve for equilibrium outcomes.

F.2.1 True Price Function

Given the information structure, market clearing leads to the following price function:

ng] t (]_ — ¢>7—Ut AZ
= d Egv] + . v| — F.3
' o1+ (1 — @)Uy ralt] o1+ (1 — @) 7oy elt] o114+ (1 — @)Tuy (F3)
where 774 = t1s + 10, TUr = (t — 1)7s + 70, Er[v] = tT:jTO le S; + 15‘,-:74(;7-0#07 and Ey,[v]

depends on the mapping uninformed traders use to extract information from prices, which
we turn to next.

Before we do so, notice that we can re-write the true price function more succinctly

as:
Pt = AtE]’t[U] + Bt]EU,t[v] — Kt (F4)
— PTI¢ — (1-8)u,t — AZ
where A; = d1re+(1=9)TU e By = dTre+(1=9)TU e Fo and Ky = ¢ +(1=9)TU
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F.2.2 Rational Mapping Used to Infer Information from Prices

When uninformed traders have rational expectations, and learn information from past

prices, they are able to infer the right information, such that:

Eth[U] = E[’t_l[v] = E[’t_l[U] <F5)

F.2.3 PET Mapping Used to Infer Information from Prices

To understand what information uninformed traders infer from prices under partial equi-
librium thinking, we need to pin down uninformed traders’ beliefs of what generates the

price changes they observe. Specifically, PET uninformed traders think that prices evolve

as follows:
DT - (1= @)Uy AZ
P =— : —Fr v + — ’~ — — — F.6
! OTre+ (1 — @) s ralv] o+ (1 — €Z5)7'U,tuo o7+ (1 — @) oy (F6)
where 77, = t7, + 79 and Ty, = 79. We can write this more succinctly as:
Pt = AtEN'Lt[U] — Kt (F?)

OTT ¢ Kt _ (1-9)7us AZ

~Fmar-groHo T g a(-g, Uninformed traders

then invert this mapping to infer informed traders’ previous period beliefs, which in turn
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pin down their own beliefs in period t:

Eugfv] = Erpafo] = — Py + = (F.8)

F.2.4 Results

Figure 11 plots the equilibrium price in normal times (left panel) and following a dis-
placement (right panel) for both the rational (red line) and PET (blue line) case. We use
these as benchmarks against which we can interpret the effects of adding intertemporal

trading motives, which we turn to next.

F.3 Intertemporal Problem

In this section, we consider the case where informed traders have CARA utility over
terminal wealth and perfectly understand how uninformed traders form their beliefs and
trade. Moreover, we assume that uninformed traders still engage in mean-variance utility,
and have the same demand function as in (F.8).%°

We follow He and Wang (1995) as closely as possible in solving informed traders’
maximization problem, and adapt their method to allow uninformed traders to engage in

partial equilibrium thinking.

45We choose this set of assumptions because ultimately we want to understand whether allowing
informed traders to have intertemporal trading motives would lead them to arbitrage the bubble away.
Alternative assumptions, with greater sophistication on the part of uninformed traders, can also be
accommodated.
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We start by guessing that the price function is a linear function of traders’ beliefs:
-Pt = AtEI,t[U] + B,JEUJ[U] — Kt = AP7t\Ijt (Fg)

!/
where Ap; = (_Kt A, Bt)’ and ¥, = (1 E;.[v] EUt[U]> is our state vector. Sec-

ond, we guess that the value function takes the following form:
J(Wig Upst) = By [—emAWir] = —e AWz Vil (F.10)

To solve for the equilibrium price function, we first need to show that ¥, and ;.1 =
P,,1 — P, are Gaussian processes. Second, we can use CARA normal results to simplify
informed traders’ maximization problem given the guessed value function form at ¢ 4 1,
and find informed traders’ demand function. Using the derived demand function we
can then also verify by recursion that the value function takes the postulated form at ¢.
Third, we write down uninformed traders’ demand function. Fourth, we impose market
clearing, and match coefficients to define Ap; recursively. Fifth, we solve the problem
for period T', in order to start the recursion which allows us to compute the coefficients
of the equilibrium price function, backwards. Finally, starting from a steady state with
homogeneous beliefs (Erg[v] = Epo[v] = po) in period ¢ = 0, we simulate the model

forwards.
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F.3.1 Gaussian State Vector
To show that the state vector follows a Gaussian process, let’s first see how each element

evolves:

t7s + 7o
(t+ )75+ 70

Ts

-_— 5 F.11
(t+ )75+ 70 i+ ( )

Ev] = Er[v] +

Ts

—Epnf)+—2
relv) (t+ 1)1 + 70

O'St+1‘txt+1 (F12)

where the second equality uses the fact that s;11 = Er[v] + €141 + (v — Er4[v]), such that
Ty = —E”ﬁg(::i“[v]) ~ N(0,1) and opqpe = (75) 7 + (b7 + 70) -
Turning to uninformed traders’ beliefs, we assume uninformed traders form their be-

liefs according to (F.8) (and we also assume that informed traders are sophisticated and

understand that this is how uninformed traders form beliefs):

1 K,

Eyta[v] = ZPt + 1 (F.13)
t
A B K, — K,
= =E;;+—=E - F.14
A, It A, Ut [U] A, ( )

where the second equality uses our guess for the price function in (F.9).

We can now use (F.12) and (F.14) to write the evolution of the state vector as follows:

U1 = A1V + By 41241 (F.15)
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where A = and B =|__ 7=
v+l 0 1 0 v+l (t+1):—s+7-0 O-sH—l\t
Ki—K: A Bt 0
A, A A

Moreover, using the definition of Q;.1, and substituting in it our guessed price function

in (F.9) and the law of motion of the state vector in (F.15), we have that:

Qi1 = AQ i1V + Bo 1741 (F.16)

where Ag 11 = Aptr1Av i — Apy and Bg iy = Apii1 By gy
Since both W, ,; and Q);11 are Gaussian processes given agents’ beliefs and our guessed
price function, we can now apply Lemma 4 in He and Wang (1995) to show that informed

traders have linear demand functions.

F.3.2 Informed Traders’ Demand Function

Informed traders solve the following intertemporal optimization problem, according to

which they maximize CARA utility over terminal wealth:

max E[,t [—G_AWI’T} s.t. WI,t—H = W[,t + XI,tQt-i—l (Fl?)

Xrt

where Wy r is the wealth of (a single) informed trader at the final date 7', and Q1 =
P,.1 — P, is the excess return on one share of the risky asset. Following He and Wang

(1995), let J(Wy; Wy;t) be the value function. The Bellman equation for the optimization
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problem in (F.17) is given by:

0= H)}ax {Ef,t [J<Wf7t+1; \Ijt+1; t+ ].] - J(Wf,t; \Ijta t)} (Flg)
It

s.t. W]7t+1 = WI,t + X]7tQt+1 (Flg)

JWip; Ui T) = —e MWiT (F.20)

Since we saw in (F.15) and (F.16) that W, and Q41 are Gaussian processes, we can
directly apply Lemma 4 from He and Wang (1995), given our guessed value function in

(F.10). We can then show that informed traders have the following linear asset demand

function:
1
Xy = ZFt\Ijt (F.21)
where:
k= (BQ,t+15t+lB/Q,t+1)_1(AQ,tH - BQ,t+15t+1B&;,t+1UZHA@,M) (F.22)
— _ / -1
Sl = (1 + B\Il7t+1Ut+1B\Ij,t+1> (F23)

Plugging this demand function into the value function also allows us to verify that the

value function at t is of the postulated form:

T(Wry; Upst) = —e AWzttt (F.24)
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with:

Uy = M, + ¢} (F.25)

Mt = P;l BQ,t-i-lEt—‘rlB, t+1 Ft
Q,

/
- (B(I/,t—i-lUt—l—lA\If,t-&-l) Ztt1 (B(p,t+1Ut+1A\p,t+1) + Ay 1 U1 A (F.26)

where ¢; = —21Inpyy1, pry1 = m, and I} is a (3x3) index matrix which has all the
elements being zero except element {11} being 1.4

Notice that (F.21) is then a function of Ap; (since Ag 41 and Ay 41 are both functions
of Ap;), which is the coefficient governing the price function at t. To determine these
price function coefficients, we need to compute the demand function of uninformed traders,

impose market clearing, and then match coefficients, given our guess in (F.9).

F.3.3 Uninformed Traders’ Demand Function

The demand of uninformed traders is:

XUt — (F27)

46This adjustment is because the value function is multiplied by the constant p;;1, independent of
beliefs, which is equivalent to having the state vector multiplied by such a matrix since the first element
of the state vector is just the constant 1.
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Define the precision of uninformed agents as 77, = (¢ — 1)7, + 79, so that in matrix form:

1 1
Xﬁf:Aﬁu<Q)O O__Am>wf:ADﬂh (F.28)

where D; = TU7t( (0 0 1) — Apﬂg).

F.3.4 Market Clearing and Matching Coefficients

Aggregating demands and imposing market clearing, we get:

Z=|-F+

¢ 1—¢
A A

Dt) P (F.29)
Since the left-hand side is a constant (Z is independent of Ey4[v] and Ej4[v], the second
and third entries of W;), the matrix in front of ¥, on the right-hand side must be equal

to:

1 —
iE+A¢Q:<ZO 0 (F.30)

To isolate the unknown term Ap;, we can decompose Ay i1, £} and D, in terms that

include Ap; and terms that do not. Specifically, let:

t+g¢ (1—gt)
w0 0
AI\II,tJrl = 0 0 _Tf(t and A2Q7t+1 = | L (Fgl)
0 0 1 0

we can then write:
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Ay i1 = Arw 1 Apr + Asw i (F.32)
Fy = F14Apy + Foy (F.33)
D, = D, ;Apy + Doy (F.34)

where:

Fiu = (BoenZrmBopn) ™ (ArenAwen = 1= BounZii Byl v ) (F.35)
Fiu = (BauniZenBopn) ™ (AreriAvsen = BauniZen By Ui sven ) (F.30)
Dyt = =1y (F.37)

Doy = 1 (0 0 1) (F.38)

The method of matching coefficients thus allows us to define Ap; recursively:

1 _
j(Fl,tAP,t + Foy) + f(Dl,tAP,t + Dyy) = (Z 0 O) (F.39)

and since ¢F s+ (1 —¢) Dy 4 is a scalar, we can solve for the price function Ap; recursively

as:

1

A —
PTG, + (1 —

¢>D1,t<<AZ 0 0>—<¢F2,t+<1—¢>Dz,t>> (F.40)

F.3.5 Starting the Recursion

We need to initialize the recursion at I" by providing expressions for:
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1. The elements of the matrix in price function, App = ( Ar Bp — KT)

2. The matrix Ur

Price Function in Period T. The price function is easy to get since there are no

dynamic/speculation motives anymore in period 7. Market clearing then yields:

IE”[U] _PT ]Eth[’U] _PT

T+ 1) + =) (T =D 7)== Z (F.41)
Which gives:
o(T'7s + 10)
Ar = (T +10)+ (1 =) (T — 1)75 + 70) (F.42)
1-¢)(T - )7 + 70)
b= ST )+ = 9)(T - Dm +m0) (F.43)
fr= = (F.44)

¢(T7s +70) + (1 = @) (T = )7 + 70)

Matrix Ur. To find Uy, notice that the expected value function of informed traders in
period T is simply given by (since Ur,; = 0, as there are no more intertemporal trading

motives in the final period):

EI,T exXp (—AWT+1) == E],t €xXp (—A[WT + X[,T(U — PT)]) (F45)
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where only v is stochastic, and follows a normal distribution: v ~ N (]ELT[U], ﬁ) S0

this is simply equal to:

]EI,T exXp <_AWT+1) = exXp (—A[WT — XI,TPT]) ET exp (—AXLTU) (F46)
1 A*X7?
= exp (—A[Wr — X;7Pr]) exp <—AXLT1ELT[U] + 2TT+[;F0>
(F.47)

For conciseness let Ip; = (0 1 0), so that the demand function can be written as:

1
XI,T = ZFT\I/T where FT = (TTS + 7'0) (]EI — AP,T) (F48)

and the various components in (F.47) can be written as:

1
AXI,TPT = FT\IJTAP,T\I]T = Z\I[,TFYCART\DT (F49)
AXrEir[v] = Y Fplp Yy (F.50)
1 A*X7 1
= U EpFriy (F.51)

§TTS +710 2(Tts + 719)

Substitututing (F.49), (F.50) and (F.51) into (F.47), we have:

1
Eg exp (—AWT - QW’TUT\IIT> (F.52)
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where the first iteration of the U matrix is pinned down as follows:

1
Upr=—-2F.|Apr — E —F F.53
T T ( PT 7,1 T 2(T7 + ) T) ( )

which concludes the recursion.

F.3.6 Numerical Solution

To simulate a price path for the intertemporal problem, we proceed as follows:

1. For each t, construct the misspecified model of the world used by Uninformed traders

according to equation (F.7), in order to recover A, K

2. Construct the matrices App and Ur that initiate the recursion according to equa-

tions (F.42), (F.43), (F.44) and (F.53);
3. Recursively construct Ap; and U, for each ¢ by backward induction;

4. Starting from a steady state with E;o[v] = Ey[v], feed a path for signals {s;} and

construct the price path forwards.

F.4 Results

The top panel of Figure 11 compares the equilibrium price path with intertemporal trading
motives achieved in this way (green line) to the price path which arises when all traders
have period-by-period mean-variance utility and uninformed traders are either rational

(red line) or partial equilibrium thinkers (blue line). The left panel depicts equilibrium
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prices in normal times, as shown from the fact that the corresponding strength of the
feedback effect (depicted in the bottom left panel) is always below one. The right panel
depicts equilibrium prices following a displacement, as shown from the fact that the corre-
sponding strength of the feedback effect (depicted in the bottom right panel) temporarily
increases above one.*”

Figure 11 shows that in normal times dynamic trading motives lead informed traders
to arbitrage the short-term mispricing away more quickly, than when traders are myopic.
Instead, following a displacement, dynamic trading motives amplify the bubble. These
results are consistent with the intuition we uncovered in Section 4, where traders had
speculative motives. To understand why this is the case, notice that when informed
traders have dynamic trading motives, they understand that a higher price today leads
uninformed traders to have more optimistic beliefs tomorrow, thus pushing up potential
capital gains from holding the asset today. This leads to a higher W,U,¥; in the value
function. As a result, informed trader’s marginal utility of present wealth is lower, which
makes it attractive for them to buy the asset (and which effectively makes their asset
demand more inelastic), pushing up the price further, and making speculation even more
attractive. This generate a two-way feedback effect between prices and expected capital

gains, which amplifies the two-way feedback effect between prices and uninformed traders’

beliefs inherent in partial equilibrium thinking.

47 As in the baseline model, the strength of the feedback effect is stronger when there are fewer informed
traders in the market, and when the informativeness of news is low relative to the prior.
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Figure 11: Bubbles and crashes with intertemporal trading. The left panel simulates price
paths and the corresponding feedback effect after normal times shock, when the feedback effect stays
below 1 throughout. The right panel simulates the price path and the corresponding feedback effect after
a displacement shock, when the strength of the feedback effect temporarily increases above 1. The green
lines plot equilibrium prices when informed traders have intertemporal trading motives, while the blue
and red lines plot equilibrium price paths when all traders have period-by-period mean variance utility,
under partial equilibrium thinking and under rational expectations respectively.
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